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Abstract—Capturing the skeleton motion and detailed time-varying surface geometry of multiple, closely interacting peoples is a very

challenging task, even in a multicamera setup, due to frequent occlusions and ambiguities in feature-to-person assignments. To

address this task, we propose a framework that exploits multiview image segmentation. To this end, a probabilistic shape and

appearance model is employed to segment the input images and to assign each pixel uniquely to one person. Given the articulated

template models of each person and the labeled pixels, a combined optimization scheme, which splits the skeleton pose optimization

problem into a local one and a lower dimensional global one, is applied one by one to each individual, followed with surface estimation

to capture detailed nonrigid deformations. We show on various sequences that our approach can capture the 3D motion of humans

accurately even if they move rapidly, if they wear wide apparel, and if they are engaged in challenging multiperson motions, including

dancing, wrestling, and hugging.

Index Terms—Markerless motion capture, multiview video, multiple characters, image segmentation

Ç

1 INTRODUCTION

MARKERLESS human motion capture has been studied for
several decades and is still a very active field of

research in computer vision [1], [2]. While a tremendous
amount of progress has been made in skeleton pose
estimation, for example, [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], many applications, including realistic character
animation for games and movies, require capturing time-
varying geometry in more detail, for example, of soft tissue
or a garment. To this end, 3D surface estimation methods
have been proposed, for example, [13], [14], [15], [16].
However, tracking the full geometry over time is more
demanding on processing time and image quality than
skeleton-based methods. Therefore, a two-pass approach
has been proposed [17] that utilizes a skeleton to increase
the robustness of a mesh-based method [15]. In the first
pass, a skeleton is semi-automatically fit into the recon-
structed visual hull for each frame. The second pass
deforms a template mesh according to the estimated
skeleton and refines the template to fit the silhouettes.

Our work is related to the approach in [17], but instead
of using a two-pass approach we estimate the skeleton
pose and the mesh deformation together for a single frame.
To this end, we use a body model that is a combination of
a bone skeleton with joints, as well as a surface whose
deformation is only loosely coupled with the skeleton
motion. In this way, the skeleton provides a low-dimen-
sional motion parameterization, which facilitates tracking
of fast movements of the body, and the skeleton pose
estimation benefits from the template mesh adaptation
over time. Our approach exceeds the performance of
related methods from the literature since both accurate
skeleton and surface motion are found fully automatically.
Moreover, the captured performances can be easily edited
and used in animation frameworks typical for games and
movies, which are almost exclusively skeleton based [18].

Another advantage of our approach is the ability to
capture multiple characters simultaneously. In contrast to
capturing only a single person, multiperson scenarios
impose additional challenges, in particular, frequent occlu-
sions and ambiguities in assigning commonly used features
like silhouettes, color, edges, or interest points to one
person. Therefore, only a very few works [19], [20], [16]
have addressed this scenario and even in these works the
amount of physical contact between two characters is very
limited, for example, the hand shake of two people.

In this work, we go beyond the abilities of related
methods because our approach captures the skeleton
motion and time-varying geometry of multiple, closely
interacting characters performing actions with frequent
physical contact like wrestling, dancing, or hugging. To
handle the high dimensionality of the pose parameters of all
people and to resolve the feature-to-person assignments, we
employ a probabilistic multiview image segmentation to
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determine the image regions each person belongs to. To this
end, we use a 3D shape prior for segmenting interacting
characters that integrates the previously estimated poses
and shapes. The segmentation allows us to generate
separate silhouette contours and image features for each
person, which drastically reduces the ambiguities. This
allows us to perform pose and surface estimation efficiently
and in parallel for each performer.

Preliminary versions of this paper appeared in [21] and
[22]. While Gall et al. [21] introduced the approach for
estimating the skeleton pose and time-varying geometry of
a single character, Liu et al. [22] introduced the probabilistic
multiview image segmentation framework for capturing the
motion of two characters. The present paper gives a
comprehensive overview of the full system and extends
the previous approaches by the ability to handle more than
two people. The system is also thoroughly evaluated,
including a quantitative evaluation of the impact of the
3D shape prior and the color model on the segmentation
accuracy, a quantitative evaluation of the impact of the
quality of the template model on the pose and shape
estimation, and a qualitative evaluation on 23 multiview
video sequences. The sequences is comprised of 13 se-
quences with a single person or an animal, seven sequences
with two interacting people, and three sequences with three
people. The sequences were recorded with seven different
camera setups and more than 20 different subjects perform-
ing a wide range of motions in a variety of clothes.

2 RELATED WORK

Many approaches exist for human pose estimation either
from images or videos [1], [2] or from depth data [23], [24].
We mention only the methods that are most related to ours.
For a more detailed discussion, we refer to the books [2], [23].

Similarly to the work of Bregler and Malik [4], we
represent the kinematic chain of a human skeleton by
twists. In this case, the human motion can be linearized and
efficiently optimized by local optimization. In the literature,
several approaches for optimizing the pose parameters have
been proposed. For instance, stochastic metadescent for
local optimization has been used in [25]. Gavrila and Davis
[3] propose a search space decomposition where the pose of
each limb is estimated in a hierarchical manner according to
the kinematic chain. Starting with the torso and keeping the
parameters of the other limbs fixed, the pose of each limb is
locally searched in a low-dimensional space one after
another. This approach, however, propagates errors
through the kinematic chain such that the extremities suffer
from estimation errors of preceding limbs. Drummond and
Cipolla [26] iteratively propagate the distributions of the
motion parameters for the limbs through the kinematic
chain to obtain the maximum a posteriori pose for the entire
chain subject to the articulation constraints. Besides
stochastic approaches [27], [5], global optimization techni-
ques like simulated annealing [28], [6] have also been
proposed to overcome the limitations of local optimization.
However, global optimization is still too expensive for large
datasets and skeletons with many degrees of freedom.

To increase the accuracy of human body models, implicit
surfaces based on metaballs [29], shape-from-silhouette

model acquisition [30], or the learned SCAPE body model
[31], [32] have been proposed. Most of these approaches
model the human body without clothing. Balan and Black
[33] use SCAPE to estimate the human body underneath
clothes from a set of images. Tracking humans wearing
more general apparel has been addressed in [34], where a
physical model of the cloth is assumed to be known.

In contrast to skeleton-based approaches, 3D surface
estimation methods are able to capture time-varying
geometry in detail. Many approaches like [13], [14] rely on
the visual hull but suffer from topology changes that occur
frequently in shape-from-silhouette reconstructions. Mesh-
based tracking approaches, for example, [35], [15], provide
frame-to-frame correspondences with a consistent topology.
Fitting a mesh model to silhouettes and stereo, however,
requires a large amount of correspondences to optimize the
high-dimensional parameter space of a 3D mesh. This, in
turn, makes them more demanding on processing time and
image quality than skeleton-based methods.

Our approach for single person tracking is most similar
to the work of Vlasic et al. [17], where a two-pass approach
has been proposed. In the first pass, a skeleton is
geometrically fit into the visual hull for each frame. The
second pass deforms a template model according to
the estimated skeleton and refines the template to fit the
silhouettes. Despite visually appealing results, a consider-
able amount of manual interaction is required in [17] (up to
every 20th frame) to correct the errors of the skeleton
estimation. The errors are caused by fitting the skeleton to
the visual hull via local optimization without taking a
complete surface model or texture information into account.
In contrast, our local-global optimization is fully automatic
and also works on data of poor image quality. In [36], our
approach has been further extended to estimate not only
surface and pose parameters, but also the parameters of the
skeleton. Another extension has been proposed in [37],
where the approach is applied to depth data and camera
poses are estimated in addition.

Markerless motion capture of multiple performers has
only been considered in very few works. Cagniart et al. [20],
[16] use a patch-based approach for surface tracking of
multiple moving subjects based on the visual hull geometry.
However, they do not provide skeleton motion, and the
subjects are well separated and never interact closely.
Guillemaut et al. [38] propose a volumetric graph-cut
method for the segmentation and reconstruction of multiple
players in sports scenes like football games. This approach
reconstructs only a rough 3D shape of each player, which is
suitable for applications like 3D television broadcast, but
not for detailed performance capture. Egashira et al. [19]
propose a volumetric segmentation on the visual hull of the
scene to separate the persons. However, when multiple
people are in physical contact, volumetric segmentation of
the visual hull is not as accurate as image-based segmenta-
tion prior to 3D reconstruction.

A number of researchers have investigated methods for
tracking bounding boxes of multiple humans from a single
camera [39] or multiple cameras [40], [41], [42]. In the very
restricted context of pedestrians and only walking motion,
the skeleton motions of several people have been estimated
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in [43], [44]. Zhang and Ngan [45] present a joint object
detection, segmentation, and tracking approach to segment
a group of people into individual human objects and track
them across the video sequence using multiview video,
without the estimation of skeleton motion and surface
geometry for each human.

Image segmentation techniques have been used for
skeleton pose estimation of a single person in [46], [47],
[48]. In [47], [48], the articulated pose of the previous frame
is used as shape prior for level-set segmentation, and the
pose is either estimated within an analysis-by-synthesis
framework [48] or in combination with optical flow and
SIFT features [47]. Graph-cut segmentation is used in [46],
where a multiview foreground image segmentation is
coupled with a simple stick model for pose estimation.
For each time instant, the method computes the segmenta-
tion costs for all candidate poses and chooses the pose with
minimal energy. However, the pose estimates may some-
times be inaccurate since the minimum cut cost does not
necessary coincide with the correct pose. In the case of
multiple people, this may become even more of a problem
since occlusions often change the 2D topology.

3 OVERVIEW

We capture one or multiple human performers using
synchronized and calibrated cameras. For each input image,
foreground silhouettes are extracted by background sub-
traction. As in [17], we aim at estimating the skeleton
configuration (pose), consisting of the global rigid transfor-
mation of the torso and the joint angles of the skeleton, as
well as nonarticulated surface deformations (shape) that
cannot be represented by a skeleton-driven deformation.
Unlike previous work, we go beyond single person tracking
and capture pose and shape in the context of challenging
human-human interactions with physical contact.

An outline of the processing pipeline is given in Fig. 1.
Starting with the estimated poses and shapes of all people in
the previous frame, the proposed algorithm estimates the
poses and the shapes in the current frame based on the
captured multiview images and foreground silhouettes
(Fig. 1b). Since the whole space for the unknown pose and
shape parameters becomes very large for multiple people,
we split the tracking problem into a multiview 2D
segmentation problem (Figs. 1c and 1d) and a 3D pose and
shape estimation problem (Figs. 1e and 1f). The segmenta-
tion separates the people in the image domain by assigning a

label to each foreground pixel. Then, based on the labeled
pixels, the pose and the shape are estimated for each person
independently. To facilitate understanding, we discuss the
pose and shape estimation given the segmentation first in
Section 4 and then introduce the multiperson motion
capture approach with segmentation in Section 5.

4 POSE AND SHAPE ESTIMATION

The body model of each human character consists of two
components, a 3D triangle mesh surface model S with 3D
vertices Vi and an underlying bone skeleton as shown in
Fig. 1a. The configuration of the skeleton is represented by
a set of twists �j�̂j 2 seð3Þ as in [4]. Each twist can be
converted into a rigid body motion using the exponential
map: expð�j�̂jÞ 2 SEð3Þ. For more details on the twist
representation, we refer to [49].

Each vertex Vi is associated with a bonemwith a skinning
weight �i;m, where

P
m �i;m ¼ 1. Since each bone m is

influenced by nm out of totally N joints, the transformation
of a vertex Vi with blend skinning is given by

Tið�ÞVi ¼ DLB �i;m;Tmð�Þ
� �

Vi; ð1Þ

Tmð�Þ ¼
Ynm
j¼0

exp
�
��mðjÞ�̂�mðjÞ

�
; ð2Þ

where DLB computes the weighted mean of the transfor-
mations Tmð�Þ using dual quaternion skinning [50].
The mapping �m represents the order of the joints in the
kinematic chain. Since the joint motion depends only on the
joint angle �j, the state of a kinematic chain is defined by a
parameter vector � :¼ ð�0�0;�jointsÞ 2 IRd that consists of
the six parameters for the global twist �0�̂0 and the joint
angles �joints :¼ ð�1; . . . ; �NÞ. While the joints are manually
placed into each mesh, the skinning weights �i;m are
automatically computed using the approach [51].

An outline of the pose and surface estimation is given in
Fig. 2. Starting with the estimated mesh and skeleton from
the previous frame, the skeleton pose is optimized as
described in Section 4.1 such that the projection of the
deformed surface fits the image data in an optimal way
(Fig. 2b). Since this step only captures deformations that can
be approximated by articulated surface skinning (Fig. 2c),
the nonrigid surface is subsequently refined as described in
Section 4.2 (Fig. 2d). The estimated refined surface and
skeleton pose serve as initialization for the next frame to be
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Fig. 1. Overview of our processing pipeline: (a) Articulated template models. (b) Input silhouettes. (c) Segmentation. (d) Contour labels assigned to
each person. (e) Estimated surface. (f) Estimated 3D models with embedded skeletons.



tracked (Fig. 2e). The approach for pose and surface
estimation is summarized in Algorithm 1.

4.1 Skeleton-Based Pose Estimation

Since local pose optimization is prone to getting stuck in
local minima of the energy function and global pose
optimization is very expensive, our method estimates
poses in two phases. The first phase searches for the
nearest local minimum of an energy functional that
assesses the model-to-image alignment based on silhou-
ettes and texture features (Section 4.1.1). In the second
phase, misalignments are detected and resolved by global
optimization (Section 4.1.2).

4.1.1 Local Optimization

For estimating the pose parameters �, a sufficient set of
point correspondences between the 3D model, Vi, and the
current frame, xi, is needed. For the local optimization, we
rely on silhouette contours and texture. Contour corre-
spondences are established between the projected surface
and the image silhouette by searching for closest points
between the respective contours. Texture correspondences
between two frames are obtained by matching SIFT
features [52]. In both cases, the 2D correspondences are
associated with a projected model vertex Vi yielding the
3D-2D correspondences ðVi; xiÞ. In the contour case, xi is

the point on the image contour closest to the projected

vertex location vi in the current frame. In the texture case,

xi is the 2D location in the current frame that is associated

with the same SIFT feature as the projected vertex Vi in the

previous frame. Since each 2D point xi defines a projection

ray that can be represented as a Plücker line Li ¼ ðDi;MiÞ1
[53], the error of a pair ðTmi

ð�ÞVi; xiÞ is given by the norm

of the perpendicular vector between the line Li and the

transformed point Tmi
ð�ÞVi:

� Tmi
ð�ÞVið Þ �Di �Mik k2; ð3Þ

where � denotes the projection from homogeneous

coordinates to nonhomogeneous coordinates. In contrast

to (1), the skinning weights are not used, and mi is the

limb with the highest skinning weight, i.e., argmaxm�i;m.

The resulting least-squares problem with weights wi for

the correspondences

argmin
�

1

2

X
i

wi � Tmi
ð�ÞVið Þ �Di �Mik k2

2 ð4Þ

can be solved iteratively and linearized by using the Taylor

approximation expð��̂Þ � I þ ��̂, where I denotes the

identity matrix. To stabilize the optimization, the linear

system is regularized by ��j ¼ ��̂j, where �̂j is the predicted

angle from a linear third order autoregression and � is a

small constant. Since the optimization regards the limbs as

rigid structures, the mesh is updated between the iterations

by dual quaternion blending (1) to approximate smooth

surface deformations.
While contour correspondences are all weighted equally

with wCi ¼ 1, the texture correspondences have higher

weights wTi during the first iteration because they are more

stable under large displacements. For the first iteration, we

set the weights such that
P

i w
T
i ¼ �

P
i w

C
i , with � ¼ 2:0.

This means that the impact of the texture features is twice

as high as the contour correspondences. After the first

iteration, the solution will already be close to the nearest

local minimum such that the texture features can be

downweighted by � ¼ 0:1. In addition, obvious outliers

are discarded by thresholding the reprojection error of the

texture correspondences.
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Fig. 2. Using the estimated surface of the previous frame, the pose of the skeleton (b) is optimized such that the deformed surface (c) fits the image
data (a). Since skeleton-based pose estimation is not able to capture garment motion (c), the surface is refined to fit the silhouettes (d).

1. A Plücker line L ¼ ðD;MÞ is determined by a unit vector D and a
moment M, where X �D�M ¼ 0 for all points X on the line.



4.1.2 Particle-Based Global Optimization

After the local optimization has converged to a solution �,
the error for each limb is evaluated individually. Since each
correspondence is associated with one limb m, the limb-
specific energy is obtained by

Emð�Þ¼
1

Z

X
fi;mi¼mg

� Tmi
ð�ÞVið Þ �Di �Mik k2

2; ð5Þ

where only contour correspondences are used and
Z ¼ jfi;mi ¼ mgj. When the energy exceeds a given thresh-
old �E, the affected limb is labeled as misaligned. While
large values for �E increase the runtime, low values increase
the risk of getting stuck in a local minimum. In our
experiments, we found that thresholds above 400, corre-
sponding to a RMSE error of 20 mm, give good results. In
addition, the preceding limb in the kinematic chain is also
labeled when the joint between the limbs has less than three
degrees of freedom (e.g., knee or elbow), as illustrated in
Fig. 3. For instance, a wrong estimate of the shank might be
caused by a rotation error along the axis of the thigh.

After labeling the joints of the misaligned limbs, the
parameter space of the skeleton pose IRd is projected onto a
lower dimensional search space P ð�Þ ! ~� 2 IRh with h � d
by keeping the parameters of the nonlabeled joints fixed. To
find the optimal solution for ~�, we minimize the energy

argmin
~�

ESðP�1ð~�ÞÞ þ � ERð~�Þ
� �

. ð6Þ

While the first term measures the silhouette consistency
between the projected surface and the image, the second

term penalizes deviations from the predicted pose and
serves as a weak smoothness prior weighted by � ¼ 0:01.

The silhouette functional ESðP�1ð~�ÞÞ is a modification of
the Hamming distance. Using the inverse mapping � ¼
P�1ð~�Þ as a new pose, the surface model is deformed by (1)
and projected onto the image plane for each camera view c,
denoted by Bcð�Þ. As shown in Fig. 4b, the projection
encodes the body parts of all persons.

The consistency error between the segmented silhouetteFc
of a person and a projection Bcð�Þ of its model is
measured pixelwise by

ESð�Þ ¼
1

jfcgj
X
c

X
i

dc;ið�Þ; ð7Þ

with the general bidirectional distance:

dc;ið�Þ ¼ IF Fc;i; Bc;ið�Þ
� �

gF Fc;i; Bc;ið�Þ
� �

þ IB Bc;ið�Þ; Fc;i
� �

gB Bc;ið�Þ; Fc;i
� �

:
ð8Þ

While I is an indicator function of an error, g specifies the
cost of an error. The first term measures how well the
silhouette data is explained by the model. In detail, IF ðf; bÞ
is only one if f belongs to the silhouette of the person and b
is not a projected body part of the person. In this case, the
error is measured by gF ðf; bÞ ¼ �

ZF
, where � ¼ 80 is a

constant and ZF denotes the area of the silhouette. The
second term measures how well the projection is explained
by the silhouette. Hence, IBðb; fÞ is only one if b is a body
part that was visible in the previous frame and f is not part
of the silhouette. In this case, gBðb; fÞ ¼ dðfÞ

ZB
, where dðfÞ

denotes the distance to the closest point on the silhouette Fc
and ZB the area of the visible body parts. The explicit
handling of occlusions is necessary since the pose of each
person is estimated individually. Furthermore, gF uses, in
contrast to gB, a weaker, namely, constant, cost model due
to efficiency.

The second term of the energy function (6) introduces a
smoothness constraint by penalizing deviations from the
predicted pose �̂ in the lower dimensional space:

ERð~�Þ ¼ k~�� P ð�̂Þk2
2: ð9Þ

Since we seek the globally optimal solution for ~� 2 IRh,
we use a particle-based global optimization approach [54],
[6]. The method is appropriate to our optimization scheme
since the computational effort can be adapted to the
dimensions of the search space, and the optimization can
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Fig. 3. Although local optimization is prone to errors, often only a single
branch of the kinematic chain is affected (a). This reduces the
computational burden for global optimization because it can be
performed in a lower dimensional subspace to correct the estimation
error (b). After detecting misaligned limbs (red circle), the kinematic
chain is traversed (red arrows) to label bones and associated joints that
have to be globally optimized ((c) and (d)).

Fig. 4. Segmentation with shape and appearance information. (c)-(f) show the probability maps calculated according to different terms. (a) Input
image after background subtraction. (b) Projections of the body parts Bj

k. (c) Color term using a whole body appearance model. (d) Color term using
the body part appearance model. (e) Shape prior. (f) Combined shape prior and body part appearance model (17). (g) Segmentation result from (f).



be initiated with several hypotheses. It uses a finite set of
particles to approximate a distribution whose mass concen-
trates around the global minimum of an energy function as
the number of iterations increases. In our setting, each particle
represents a single vector ~� in the search space that can be
mapped to a skeleton pose by the inverse projectionP�1. The
computational effort depends on two parameters, namely,
the number of iterations and the number of particles.
While the latter needs to be scaled with the search space,
the number of iterations can be fixed. In our experiments,
we have used 15 iterations and 20 � h particles with a
maximum of 300 particles. These limits are necessary to
have an upper bound for the computation time per frame.
Furthermore, the optimization is performed on the whole
search space when more than 50 percent of the joints are
affected. It usually happens when the torso rotation is not
well estimated by the local optimization, which is, however,
rarely the case.

The initial set of particles is constructed from two
hypotheses, the pose after the local optimization and the
predicted pose. To this end, we uniformly interpolate
between the two poses and diffuse the particles by a
Gaussian kernel.

4.2 Surface Refinement

Since quaternion blend skinning is based on the overly
simplistic assumption that the surface deformation is
explained only in terms of an underlying skeleton, the
positions of all vertices need to be refined to fit the image
data better, as illustrated in Figs. 2c and 2d. To this end, we
abandon the coupling of vertices to underlying bones and
refine the surface by an algorithm that is related to the
techniques used by de Aguiar et al. [15] and Vlasic et al.
[17]. As in Section 4.1, we extract contour correspondences
ðVi; xiÞ from all views c, but we minimize the error in the
image domain instead of the 3D space for better accuracy.
This makes the linear system to be solved for the refined
surface more complex as we have to solve for all three
dimensions concurrently rather than sequentially. On the
other hand, this gives the deformation further degrees of
freedom to adapt to our constraints in the best way possible.
Using a Laplacian deformation framework [55], we refine
the surface Sp, obtained from skeleton-based pose estima-
tion (Section 4.1), by solving the least-squares problem

argmin
Sr

X
V r2Sr

kLV r�LV pk2
2þ�

X
i

kPciV r
i �xik

2
2

( )
; ð10Þ

where L is the cotangent Laplacian matrix [55] and V p are
the vertex positions of the previous surface Sp correspond-
ing to V r. While the first term preserves the differential
properties of the previous mesh, the second term, weighted
by �, aims at minimizing the error of the correspondences.
Given the 3� 4 projection matrix Pc of a camera c, split
into its translation vector Tc and the remaining 3� 3
transformation Nc, we can express a silhouette alignment
constraint of the second term using two linear equations:�

Nc
1 � xi;1Nc

3

�
Vi ¼ �Tc1 þ xi;1Tc3 ;�

Nc
2 � xi;2Nc

3

�
Vi ¼ �Tc2 þ xi;2Tc3 :

ð11Þ

Here, the subscripts l of Nl, xi;l, and Tl correspond to the
respective rows of the matrix or entry of the vector. These
equations force the vertex to lie somewhere on the ray going
through the camera’s center of projection and the pixel
position xi. Since the error of this constraint is depth
dependent and thus not linear in the image plane, we
weight each constraint such that the error is 1 for a single
pixel difference at the original vertex position. Enforcing too
high weights for our constraints may lead to an over-
adaptation in the presence of inaccurate silhouettes. We
therefore perform several iterations of the deformation
using lower weights. As the silhouette points on the mesh
may change after a deformation, we have to recalculate the
correspondences following each deformation. In all our
experiments, we performed eight iterations and used
weights of � ¼ 0:5. The estimation for the next frame is
then initiated with the estimated skeleton and an adapted
surface model that is obtained by a linear vertex interpola-
tion between the mesh from skeleton pose estimation Sp

and the refined mesh Sr, i.e., Vi ¼ �V r
i þ ð1� �ÞV

p
i . In

general, a small value � ¼ 0:1 is sufficient and enforces
mesh consistency.

5 MULTIPERSON SEGMENTATION

Before estimating the pose and shape, we label the
foreground pixels according to which person they belong
to (Figs. 1b and 1c). To this end, we integrate appearance,
pose, and shape information into an MAP-Markov random
field (MRF) [56] optimization framework to achieve
segmentations that are both efficient and robust for human
motion capture under serious occlusions and ambiguous
appearance. The full approach for multiperson pose and
surface estimation with multiperson segmentation is out-
lined in Algorithm 2.

5.1 Multiview Image Segmentation

For determining the pixel labels in each image I, we resort
to MAP inference in an MRF. Previous MRF-based image
segmentation methods use standard appearance-based
likelihood terms, as well as smoothness potentials. In our
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work, we exploit our knowledge about the 3D shape of each
performer k at the previous time instant to assign each pixel i
a label li ¼ k by optimizing an energy of the form

�ðLÞ ¼
X
i

	ðIjfSkg; f�kg; liÞþ
X
j2Ni

�ðIjli; ljÞ
 !

: ð12Þ

The solution of this multilabel problem L is obtained by
graph cuts [56].

While the unary potential 	ðIjfSkg; f�kg; liÞ, which fuses
appearance, pose, and shape information of all people, is
specific to multiperson motion capture (Section 5.2), the
pairwise potentials �ðI j li; ljÞ ¼ 	ðI j li; ljÞ þ  ðli; ljÞ, which
are computed over a neighborhood Ni of 8-connected
pixels, are commonly used in image segmentation.

As in [57], [46], 	ðI j li; ljÞ is a contrast term, which favors
pixels with similar color having the same label:

	ðI j li; ljÞ ¼



Sði; jÞ exp
�kIi � Ijk2

2�2

 !
if li 6¼ lj;

0 if li ¼ lj;

8><>: ð13Þ

where kIi � Ijk2 measures the difference in the color values
of pixels i and j and Sði; jÞ is the spatial distance between
the pixels. In addition, an observation-independent
smoothness prior in the form of a generalized Potts model
[58] is used:

 ðli; ljÞ ¼
�i;j if li 6¼ lj;
0 if li ¼ lj:

�
ð14Þ

5.2 Appearance, Pose, and Shape

Since the appearance of humans is often very similar, for
example, skin or hair color, commonly used appearance
models for image segmentation are too weak to segment
several people that are very close and occlude each other. In
our case, however, the poses � ¼ f�kg and shapes S ¼ fSkg
of all people which have been recovered in the previous
frame are strong cues that can be integrated as shape priors
for segmentation. We therefore model the unary potential
	ðI j S;�; liÞ not only conditioned on the label li, but also on
S and �:

	ðI j S;�; liÞ / � logP ðI j S;�; liÞ: ð15Þ

Since the appearance of the body usually comprises
various colors and the color distribution of the whole body
is often not discriminative enough to distinguish different
persons, we use a color model for each body part. The
intuition behind this is that the color distribution is usually
consistent for a body part but varies strongly between
different body parts, for example, while hands are typically
skin colored, other parts like upper body or legs are often
covered by clothes of a specific color. We therefore model
the appearance locally on the surface of each person and
integrate shape priors for each person into a common
multiview segmentation approach. We model the person’s
appearance for each of the body parts Bj

k as

P ðI j S;�; liÞ
¼
X
j

P ðI j i 2 Bj
k; S;�; liÞP ði 2 B

j
k j S;�; liÞ: ð16Þ

P ði 2 Bj
k j S;�; liÞ is a shape prior modeling the probability

that a pixel i belongs to body part Bj of person k. This term
will be described in Section 5.2.1. Since the appearance of a
pixel depends only on the body part, (16) can be simplified as

P ðI j S;�; liÞ ¼
X
j

P
�
I j i 2 Bj

k

�
P
�
i 2 Bj

k j S;�; li
�
: ð17Þ

The color term P ðI j i 2 Bj
kÞ / P ðIi j H

j
kÞ measures the

consistency of the color Ii of a pixel i with the color
distribution Hj

k for body part Bj of person k. The color
distributions Hj

k are modeled in the RGB color space using
Gaussian mixture models (GMMs). Since the appearance of
the person may change over time due to the change in
illumination, the color distribution Hj

k is updated during
tracking by estimating the GMMs from the labeled pixels of
the first and the previous tracked frame.

Fig. 4 illustrates the impact of the terms used for
segmentation. While the labels of the three people are
illustrated by the colors red, green, and blue, the color
values represent the probability of a pixel belonging to
each person. Fig. 4c shows that a single color model for
each person is insufficient. The skin colored regions, hair,
and legs are not well associated with one person. Using the
body part appearance model (Figs. 4b and 4d) improves
the probability maps, but there are still some ambiguities at
the legs. The shape prior (Fig. 4e) is a strong cue, although
there are still many regions with low confidence, indicated
by the dark colors. The probability maps and the
segmentation using the full model (17) are shown in
Figs. 4f and 4g. Minor ambiguities are removed by the
pairwise potentials in (12).

5.2.1 Three-Dimensional Shape Prior

The shape prior P ði 2 Bj
k j S;�; liÞ in (17) encodes an

a priori probability for assigning a body part label Bj
k for

each pixel i and therefore encodes the probability to which
person k it belongs. As in previous work, this probability
can be modeled by projecting each body model and
diffusing the projected body parts in the 2D image domain
to obtain a shape prior for all persons. This can be
implemented by either projecting each person indepen-
dently and combining the priors or by projecting all people
together. While the first approach does not handle occlu-
sions at all (Fig. 5b), the second approach gives zero
probability to parts that were occluded but reappear in the
current frame. For instance, the right arm of the woman
(green) has zero probability (Fig. 5c) although the arm
reappears in this frame (Fig. 5e). This shows that projecting
3D shapes to the image domain and then modeling the
shape priors based on 2D distances is incorrect. We
therefore model the shape prior in the 3D space and project
the probabilistic 3D prior to the image domain. As shown in
Figs. 5d and 5e, the 3D shape prior gives a reasonable
probability map for image segmentation.

To this end, we model the shape prior using the
posterior probability of the poses P ð� j I; SÞ given the
silhouette images I of all views and the estimated shapes
S of the persons. To sample new pose configurations � in
the current frame for all the persons, we use importance
sampling [59]:
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P ð� j I; SÞ / P ðI j �; SÞP ð�Þ; ð18Þ

where we take the shapes from the previous frame and rely

only on linear blend skinning, as for the skeleton-based

pose estimation (Section 4.1). The pose parameters � are

predicted from a Gaussian distribution P ð�Þ with mean

corresponding to the previously estimated pose parameters.

The likelihood term P ðI j �; SÞ measures the importance of

each sample through consistency evaluation of the pro-

jected surfaces Bcð�Þ and the foreground silhouettes Fc for

all views c:

P ðI j �; SÞ / exp �
X
c

X
i

d0c;ið�Þ
 !

; ð19Þ

where d0c;ið�Þ is the general bidirectional distance as in (8):

d0c;ið�Þ ¼ I 0F Fc;i; Bc;ið�Þ
� �

g0F Fc;i; Bc;ið�Þ
� �

þ I 0B Bc;ið�Þ; Fc;i
� �

g0B Bc;ið�Þ; Fc;i
� �

:
ð20Þ

In contrast to the pose and shape estimation that is

performed for each person independently based on the

labeled foreground silhouettes (Section 4), Fc contains the

unlabeled foreground silhouettes of all people (Fig. 4a) and

the projection Bcð�Þ contains the body parts of all people

(Fig. 4b). Hence, the indicator function I 0Bðb; fÞ does not

need an explicit handling of occlusions and is therefore only

one if b is a body part and f is not part of the silhouette.

I 0F ðf; bÞ is, as previously, only one if f belongs to the

silhouette of the person and b is not a projected body part of

the person. The error cost functions g0 are defined by

g0F ðf; bÞ ¼ 1 and g0Bðb; fÞ ¼ Zk
Zb

, where Zb is the area of the

body part b belongs to and Zk the area of the corresponding

person k. Zk
Zb

equalizes the impact of all body parts

independent of their size to avoid having parts with small

regions dominated by parts with large regions, as shown in

Fig. 6.
To approximate P ði 2 Bj

k j S;�; liÞ, we therefore draw a

set of samples f�ng from P ð�Þ and weight them by

wn ¼
exp

�
�
P

c

P
i d
0
c;i �nð Þ

�P
n exp

�
�
P

c

P
i d
0
c;ið�nÞ

� : ð21Þ

Hence, the shape prior for assigning a pixel i the body part

label bjk for person k in (17) becomes

P
�
i 2 Bj

k j S;�; li
�
¼
X
n

wn � 
bj
k
ðBc;ið�nÞÞ; ð22Þ


bj
k
ðBc;ið�nÞÞ ¼ 1 if Bc;ið�nÞ ¼ bjk;

0 otherwise;

�
ð23Þ

where c is the corresponding view. Since several poses lead

to similar projections, good estimation results can be

achieved with a relatively low number of samples, despite

a 39�K-dimensional space for �, with K being the number

of people. In our experiments, we found 300 samples enough

for a reasonable approximation of the shape prior.

5.2.2 Resolving Intersections

The evaluation of �n in (21) requires the projection of the

meshes. When the interacting people are close to each other,

the sampling from P ð�Þ might generate meshes that

intersect with each other in 3D. For instance, over 80 percent

of the samples have slight or serious intersections in some

of the sequences shown in Fig. 11. Although we can define

P ð�Þ to generate only meshes without intersections,

the additional intersection tests and constraints would

make the sampling procedure extremely time consuming.
To obtain a reliable shape prior without intersection test,

a simple yet efficient rendering approach is applied. Fig. 7a

shows an example where the right hand of a person

intersects the chest of the other person, removing its
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Fig. 6. Impact of the body part-dependent cost factor ZkZb for g0Bðb; fÞ (20).

(a) Shape prior with g0Bðb; fÞ ¼ 1. (b) Shape prior with g0Bðb; fÞ ¼ Zk
Zb

.

(c) Segmentation with g0Bðb; fÞ ¼ 1. (d) Segmentation with g0Bðb; fÞ ¼ Zk
Zb

.

Fig. 5. Comparison of shape priors using 2D shape diffusion and 3D
shape posterior. Tracked model from previous time step (a). Combining
the 2D diffused shape priors for two persons yields ambiguities due to
occlusions (b). When occluded pixels are removed before 2D diffusion,
the obtained shape prior (c) will give zero probability to the part (right
arm of the woman) that is occluded in the previous frame. In contrast,
the proposed 3D shape diffusion gives a better probability in this region
(red ellipse) (d), which leads to a better segmentation (e).

Fig. 7. Resolving intersections. (a) Intersection between two peopls.
The hand is inside the chest. (b) Standard projection. (c) Corre-
sponding data term and (d) segmentation from (c). (e) Projection with
front-face culling. (f) Data term combining both projections.
(g) Corresponding segmentation.



contribution to the data term (Fig. 7b). When this happens for
several samples, the shape prior (22) becomes inaccurate and
segmentation errors occur (Figs. 7c and 7d). However, when
rendering using front-face culling, only mesh facets that are
not facing the camera are rendered, making the hand visible
even inside of the body (Fig. 7e). We also observe that front-
face culling may produce inaccurate labeling between body
parts belonging to the same person. For example, the marked
red pixel on the face in Fig. 7e is inconsistently labeled as
belonging to the chest. We therefore generate, for each
sample �n and view c, two projections Bc and eBc, one with
normal rendering and one with front-face culling. For each
pixel i, the label Bc;i is then only changed to eBc;i if the labels
Bc;i and eBc;i correspond to two different people. Otherwise,
the label remains unchanged. While this procedure does not
resolve the intersection problem accurately and can create
additional artifacts, it improves the shape prior and the
corresponding segmentation as shown in Figs. 7f and 7g,
with very low computational overhead.

5.3 Contour Labeling

After having labeled each pixel in the input images (Fig. 1c),
we assign boundary pixels of the segmented regions to the
correct person (Fig. 1d). There are two types of boundary
pixels to be assigned. The first type of pixels lies on the
boundary between a person and the background, which can
be easily assigned to the correct person. Boundary pixels in
regions where two or more people overlap get the label of
the person whose boundary region is closest to the camera.
To this end, we evaluate the depth values of the projected
models in a neighborhood of the boundary pixel and take
the label with the lowest average depth.

6 EXPERIMENTS

We have evaluated our approach quantitatively and
qualitatively on 13 sequences with a single person or
animal, seven sequences containing two people interacting
with each other, and three sequences with three people. The
23 sequences consist of over 9,000 frames of multiview
video. While four sequences have been newly recorded, the
other sequences have been used in previous publications
[13], [17], [15], [21], [1], [22]. The sequences cover a wide
range of different motions, including dancing, fast fighting,
and jumping. An overview of all sequences is given in
Table 1. Examples of the sequences with two or three
persons are shown in Fig. 11. The sequences include
performances by 20 different subjects wearing casual
apparel, from tight jeans and t-shirt to wide skirts. For the
quantitatively evaluation, we use the HumanEva bench-
mark [1] and an evaluation sequence where one of the
people was simultaneously tracked by a marker-based
motion capture system, yielding ground-truth data. The
number of cameras in each sequence varies between 4 and
12 cameras, with frame rates between 15 and 60 fps. The 3D
surface models have either been acquired using a full body
laser scanner or using multiview stereo reconstruction. In
the experiments, we also evaluate the impact of the quality
of the body model. In Section 6.1, we first evaluate the pose
and shape estimation (Section 4) independently of the
multiperson segmentation. The full approach for capturing

multiple people interacting with each other is then evalu-
ated in Section 6.2. More experimental results are accom-
panied in the submitted supplemental videos, which can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2013.47.2

6.1 Pose and Shape Estimation

We evaluated the pose and shape estimation approach
(Section 4) on 13 sequences of subjects performing different
motions. These sequences include low-quality sequences
with few cameras, such as the HumanEvaII benchmark [1],
as well as high-resolution sequences with more cameras
where the subjects perform fast and challenging motions. To
show that our method is not limited to capturing humans,
we also tracked the motion of a small dog. Our local-global
optimization approach is able to track all sequences
successfully without any manual intervention. Even the
challenging lock sequence [13] can be tracked fully auto-
matically using our method, whereas the approach in [17]
requires a manual pose correction for 13 out of 250 frames.

A visual comparison with a mesh-based method [15] is
shown in Fig. 8. While Aguiar et al. [15] estimate the
apparel but not the human pose well, in particular the
orientations of the extremities like head and feet, our
approach benefits from the underlying skeleton model and
estimates the pose and shape accurately. To validate the
benefit of coupling pose estimation and surface estimation
in a direct comparison, we compared our approach with
two variants. As in most previous work, the first variant
performs only skeleton-based pose estimation (Section 4.1)
without surface estimation. The second variant estimates
only the surface (Section 4.2) and is therefore comparable to
a mesh-based method, as in [15]. A visual comparison is
shown in Fig. 9. As shown in Fig. 9b, the linear blend
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TABLE 1
Sequences Used for Evaluation

1Number of people (K), frames (F), and cameras (C). 2Newly captured
sequences.

2. Videos of the preliminary versions [21], [22] are available at http://
www.youtube. com/watch?v=qCz68ukbZ7k and http://www.youtube.-
com/watch?v=j4Zuj82FeLo.



skinning of the pose estimation does not capture the motion
of the shirt and the trousers. Since the surface model does
not fit perfectly, the residual error of each limb m after the
local optimization, see (5), becomes larger, and the global
optimization is triggered more often. In this case, the
amount of global optimization increased from 8 percent
using the proposed approach (Fig. 9d) to 68 percent.3

Although the global optimization takes care that the pose
does not get lost, the computation time greatly increases.
The mesh-based approach without utilizing a skeleton
completely fails to capture the arms, as shown in Fig. 9c. A
quantitative comparison of skeleton-based pose estimation,
mesh tracking, and the proposed approach is given in
Section 6.2.3.

In contrast to [15] and [17], our single person motion
tracking algorithm can also handle medium-resolution
multiview sequences with extremely noisy silhouettes, like
the HumanEvaII benchmark [1]. The dataset provides
ground truth for 3D joint positions of the skeleton that
has been obtained by a marker-based motion capture
system that was synchronized with the cameras. The
sequence S4 with three subsets contains the motions
walking, jogging, and balancing. The average errors for all
three subsets are given in Fig. 10. The plot shows that our
method provides accurate estimates for the skeleton pose,
but it also demonstrates the significant improvement of our
optimization scheme compared to local optimization. We
also compared our optimization scheme to a particle-based
global optimization without local optimization. The global
optimization with 15 iterations and 300 particles is not only
slower, the error is also slightly higher. Although this seems
to be counterintuitive, it can be explained by the different
objective functions that are optimized. While local optimi-
zation minimizes the error of the contour and SIFT
correspondences (4), the global optimization minimizes a
very simple, pixelwise consistency measure (7). The error,
however, becomes similar when both methods use only
silhouettes, i.e., when SIFT features are not used by our
approach, even though the objective functions are still not

the same. Since our approach switches between local and
global optimization and therefore between different objec-
tive functions, the standard deviation over frames is higher
for our approach compared to the particle-based global
optimization that estimates the pose more consistently over
frames. In Section 6.2.3, we show that the difference between
the two objective functions becomes smaller for high-
resolution multiview sequences with less noisy silhouettes.

6.2 Multiperson Tracking

To evaluate the proposed approach for multiperson motion
capture, we used 10 sequences containing two or three
people closely interacting with each other. Fig. 11 shows
for each sequence one frame with segmentation results and
estimated skeleton poses and surface meshes. More results
are shown in the supplemental video, which can be found
online. Although the sequences are very challenging due to
fast motions, severe occlusions, and appearance similari-
ties, our approach provides accurate and visually appeal-
ing results. In particular, the segmentation results are very
robust due to the 3D shape prior. For instance, the legs of
the people in the sequences Wrestle and Hug are correctly
labeled even though both people wear trousers of nearly
the same color. Moreover, the feet in Hop and Crossover are
assigned to the correct people despite occlusions. In some
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Fig. 8. Visual comparison of our approach with [15]. (a) Input image.
(b) Tracked surface mesh from [15]. (c) Tracked surface mesh with
lower resolution obtained by our method. Our approach estimates the
human pose more accurately.

Fig. 9. Visual comparison of skeleton-based pose estimation, mesh-
based surface estimation, and the proposed coupled approach. (a) Input
image. (b) Estimated surface mesh with skeleton-based pose estima-
tion. (c) Estimated surface mesh with mesh tracking. (d) Estimated
surface mesh with the proposed approach.

Fig. 10. Comparison of various optimization schemes. The bars show
the average error and standard deviation of the joint positions of the
skeleton for the S4 sequence of the HumanEva benchmark. The three
sets cover the frames 2-350 (walking), 2-700 (walking + jogging), and 2-
1,258 (walking + jogging + balancing). Despite of the use of SIFT
features, the error of the local optimization is significantly higher in
comparison to schemes that include a particle-based global optimization
approach (PB).

3. The sequence contains 1,000 frames and tracking the sequence with
one person would require to estimate 39� 1;000 parameters in total. Due to
the local-global optimization scheme, only a percentage of these parameters
need to be estimated by global optimization, whereas the other parameters
are estimated by local optimization.



cases, however, the segmentation is not perfect in one of
the multiview frames due to very fast motions or color
similarities that cannot be resolved by the shape prior, for
example, foot in Hit and Jump. However, this happens only
at very few frames, and the motion capture method is
robust enough to deal with small inaccuracies in segmenta-
tion. Our method can also successfully capture pose and
deforming surface geometry of people in loose apparel, for
example, in Couple dance.

6.2.1 Impact of Segmentation

To show the importance of the segmentation (Section 5)
for tracking multiple people, we compared our approach
with a variant where the poses and shapes are estimated
(Section 4) based on unsegmented foreground silhouettes.
A visual comparison is shown in Fig. 12. Without
segmentation, the data-to-model associations become
ambiguous, yielding estimation errors (Fig. 12b). In
particular, interactions with close physical contact and
severe occlusions are problematic. Since the errors
originate from problems in the underlying energy function
of the pose estimation, even global optimization strategies
cannot resolve them. Furthermore, relying only on global
optimization would be very expensive due to the very

high dimensional search space for multiple people. In
contrast, the proposed approach correctly and efficiently
determines shape and pose of both people, as local
optimization succeeds in finding the correct poses for
most frames (Fig. 12c).

6.2.2 Accuracy of Segmentation

For a quantitative evaluation of the segmentation, we
manually labeled every 10th frame of all cameras for the
sequences Wrestle and Crossover. Although these manual
segmentations are not 100 percent accurate, they serve as
ground-truth data for evaluation. The tracking accuracy of
our approach depends on the quality of the segmentation,
while in turn the segmentation depends on the tracking
accuracy due to the shape prior. A high segmentation
accuracy therefore also indicates accurate tracking results.
Our method achieves pixel labeling accuracies of 98.4 and
98.9 percent on the sequences Wrestle and Crossover. These
high values indicate that our approach is very successful in
correctly segmenting the persons in the videos and thus
also in tracking their motion.

We also evaluated the impact of the number of samples n
used for approximating the 3D shape prior (22). We tracked
both sequences with varying n and calculated the labeling
accuracies, as can be seen in Fig. 13. The segmentation
accuracy increases with the number of samples, but above
around 200 samples the benefit of additional samples
becomes negligible. Therefore, we conservatively set n ¼
300 for all our tracking experiments.

While we show qualitatively the impact of the appear-
ance model and the shape prior in Fig. 4, we also
quantitatively evaluated the impact of the terms on the
segmentation accuracy. The results in Fig. 14 show that the
appearance itself is too weak to obtain accurate segmenta-
tions. While the shape prior on its own generates reasonably
accurate segmentations, only the proposed model, which
combines appearance and shape, achieves very accurate
results on both sequences.
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Fig. 12. (a) Input image after background subtraction. (b) Motion capture
without segmentation. (c) Motion capture with segmentation. Without
segmentation, features are assigned to the wrong model, which leads to
significant errors.

Fig. 11. Markerless motion capture results. First row: Input images after background subtraction; second row: their corresponding segmentation
results; third row: estimated surfaces and skeletons. From left to right: Hop, Crossover, Bend, Wrestle, Hug, Hit, Jump, Crash, Couple dance,
and Fight.



6.2.3 Accuracy of Shape and Pose Estimation

For a quantitative evaluation of the shape and pose
estimation, 38 markers were attached to one of the people
whose motion was captured with a commercial PhaseSpace
marker-based motion capture system, as shown in Fig. 15.
The marker-based system was synchronized with the
multiview video setup. As in all other sequences, the
proposed markerless motion tracking and segmentation
method is applied to the raw video data without exploiting
any special knowledge about the markers in the scene. The
untextured black motion-capture suit and the fast and
complex motion make it challenging to track this sequence.
As an error measure, we take the average distance between
the markers and their corresponding vertices across all
500 frames of the evaluation sequence. This measure is
more precise than the skeleton-based evaluation used for
the HumanEva benchmark [1] because it captures all errors
on the surface, including twists.

The average error with standard deviation is given in
Fig. 16. In contrast to Fig. 10, the particle-based global pose
estimation yields a slightly lower error than our more
efficient optimization scheme that combines local optimiza-
tion with global optimization. The plot also quantitatively
evaluates the benefit of coupling pose and surface estima-
tion as is quantitatively shown in Fig. 9. While mesh-based
surface estimation without skeleton pose estimation similar
to [15] performs poorly, the surface adaptation used in our

approach improves the skeleton-based pose estimation. We
also compare our approach to the recent work [60].

6.3 Impact of Template Models

We also thoroughly evaluated the impact of the template
models on the tracking performance. In our evaluation
sequence, the 3D mesh templates of the people were
obtained using a laser scanner, which provides accurate
and detailed geometry for the mesh templates (Figs. 17a
and 17e). However, the mesh templates can also be obtained
using other 3D reconstruction techniques such as multiview
stereo or statistical human body models, for example, the
SCAPE model [31] or [61]. These methods capture less
accurate geometry and may contain reconstruction errors.
To investigate the impact of the model accuracy on tracking,
we generated smoothed versions (Figs. 17b, 17c, and 17f)
and fitted a statistical human body model (Fig. 17d) to the
scanned template mesh.

The average tracking error and standard deviation for
four different combinations of the smoothed template
models are given in Table 2. Geometric details are
important for body parts that are approximately axially
symmetric, like the head and the arm. Therefore, the error
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Fig. 14. Segmentation accuracy using only an appearance model, only
the shape prior, or both. The red bars and blue bars show the accuracies
for the sequences Wrestle and Crossover, respectively. The shape prior
has been approximated with 300 samples.

Fig. 15. Illustration of tracking accuracy. (a) Associating the markers
with the vertices in the first reconstructed frame. (b) and (c) Position
comparison of marker points (green points) and the corresponding 3D
vertices (red points) on two of the temporal frames, with surface point
cloud overlay.

Fig. 16. Mean and standard deviation of the tracking error for the
sequence shown in Fig. 15. Our proposed optimization achieves nearly
the same performance as the particle-based global optimization at much
lower computational cost and clearly outperforms local optimization.
Without surface estimation, the average error is 5.5 mm higher for our
approach, whereas using only surface estimation performs poorly. Our
approach is also more accurate than the method in [60].

Fig. 13. Segmentation accuracy varies with the number of samples n.
The red bars and blue bars show the accuracies for the sequence
Wrestle and Crossover, respectively.



slightly increases by smoothing the template meshes. While

the error is only measured for subject A, it is interesting to

note that the quality of the model B has also some impact

on the tracking accuracy of subject A. Based on the fitted

statistical body model As (Fig. 17d), we also modified the

weight and height parameters of the model. The tracking

errors are given in Fig. 18. Although statistical body models

do not capture apparel, the error of As (31.8 mm) is only

slightly higher than using a smoothed model. The change

on the weight and height of the model, however, substan-

tially degrades the tracking performance. This can be

explained by the mismatch of the skeleton of the model

with the skeleton of the subject. While smoothing or fitting a

body model to the scan mainly affects the surface mesh,

changing height and weight also affects the skeleton.

Although our method still produces accurate tracking

results in comparison to related work, it shows that the

body model can have a big impact on the tracking accuracy.

6.4 Computation Time

The local optimization for pose estimation takes about
3 seconds per frame for a single person in an 8-camera
setup. The global optimization takes about 12 seconds for
each dimension that is optimized and up to a maximum of
about 168 seconds per frame. The surface estimation takes
2 seconds. Depending on the difficulty of the performed
motion, the runtime per frame for a single person without
segmentation thus varies from about 6 seconds to
2.5 minutes.

When tracking multiple subjects, the runtime is mainly
limited by the calculation of the shape prior, which takes
about 1.5 minutes per person per frame. However, the
computation time of the global optimization and the shape
prior could be drastically reduced to a few seconds by using
a GPU [62]. The image segmentation takes 10 seconds for a
frame composed of 12 images. The whole system for
capturing the motion of two persons and 12 cameras takes
3 to 6.5 minutes per frame on a standard PC and 4.5 to
8 minutes for three persons and 12 cameras.

6.5 Limitations

Currently, our approach assumes that the clothes of the
captured actors are at least slightly different, which is
usually the case in everyday life; see the first row of Fig. 11.
When the clothes of the people are exactly the same, as in
Figs. 19 and 20, the color term Fig. 20b is not able to
discriminate between the people and the shape prior fails to
resolve the ambiguities when the persons are in contact. As
result, some body parts are wrongly labeled, as shown in
Figs. 19b and 20e, and the pose and shape estimation are
erroneous. Our segmentation and tracking method may
also fail when the hands of two people touch, as neither
appearance nor shape information are sufficient to uniquely
identify the person for each pixel. For instance, the hands of
the people in the sequence Couple dance are not correctly
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Fig. 18. Comparison of tracking performances using different 3D
template models. Each circle is a sample of the shape parameter
space of the fitted SCAPE model As shown in Fig. 17d. The mean and
standard deviation of the tracking errors are shown in the center of
each sample.

Fig. 19. Two people wearing the same clothes. (a) One of the input
images. (b) The right arm of one person is wrongly segmented. (c)
Estimated surface meshes. (d) Reconstructed models with skeletons.

Fig. 17. Tracking with different 3D template models. (a) Scan of subject
A. (b) Smoothed mesh A0. (c) Further smoothed mesh A00. (d) Fitted
SCAPE model As. (e) Scan of subject B. (f) Smoothed mesh B0. The
tracking results for the smoothed meshes are shown in Table 2. The
tracking results for the SCAPE model with different parameters are
given in Fig. 18.

Fig. 20. (a) Another example of two persons wearing the same clothes.
(b) Color term. (c) Shape term. (d) Combined shape prior and body part
appearance model. (e) The right arm of the occluded person is wrongly
segmented. (f) Estimated surface meshes.

TABLE 2
Comparison of Tracking Performances

Using Differently Smoothed Template Models

The corresponding models are shown in Fig. 17.



tracked (Fig. 11). This issue may be resolved at the cost of
computation time by explicitly modeling body parts and
intersections. The detail of geometry that can be captured is
also limited by the image resolution and the used image
features, namely, silhouettes and SIFT features. We also
assume that foreground silhouettes are available or can be
easily extracted. An extension of the segmentation to
general scene backgrounds, however, is feasible. Finally,
runtime performance can be improved by using a GPU or
lower resolution meshes for the shape prior.

7 CONCLUSION

We have proposed an approach that advances the state of
the art in markerless human motion capturing because it is
the first approach that captures skeleton motion and
detailed surface geometry of two or more closely interacting
persons. To keep the complexity of the problem tractable,
we have divided the task into several subproblems that are
solved for each frame one by one, but that depend on each
other over the entire sequence. For motion capture, we first
estimate the articulated motion by a skeleton-based
approach using a combination of local and global optimiza-
tion. The residual nonarticulated motion is then estimated
by a mesh-based approach. To capture the motion of
multiple people, we first solve the feature-to-model assign-
ment problem by segmentation and then estimate the pose
and shape of each person independently. We have further
shown that the proposed 3D shape prior is a better model
for segmentation than commonly used 2D shape priors.
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