
Shape and Reflectance Reconstruction Using
Concentric Multi-Spectral Light Field

Mingyuan Zhou, Yuqi Ding, Yu Ji, S. Susan Young, Senior Member, IEEE, Jingyi Yu, and Jinwei Ye

Abstract—Recovering the shape and reflectance of non-Lambertian surfaces remains a challenging problem in computer vision since

the view-dependent appearance invalidates traditional photo-consistency constraint. In this paper, we introduce a novel concentric

multi-spectral light field (CMSLF) design that is able to recover the shape and reflectance of surfaces of various materials in one shot.

Our CMSLF system consists of an array of cameras arranged on concentric circles where each ring captures a specific spectrum.

Coupled with a multi-spectral ring light, we are able to sample viewpoint and lighting variations in a single shot via spectral multiplexing.

We further show that our concentric camera and light source setting results in a unique single-peak pattern in specularity variations

across viewpoints. This property enables robust depth estimation for specular points. To estimate depth and multi-spectral reflectance

map, we formulate a physics-based reflectance model for the CMSLF under the surface camera (S-Cam) representation. Extensive

synthetic and real experiments show that our method outperforms the state-of-the-art shape reconstruction methods, especially for

non-Lambertian surfaces.

Index Terms—Shape reconstruction, surface reflectance, multi-spectral, light field

Ç

1 INTRODUCTION

SURFACE shape and reflectance reconstruction from
images is a fundamental problem in computer vision

that can benefit numerous applications ranging from
graphics rendering to scene understanding. Well-estab-
lished solutions based on multi-view stereo [1], [2], [3] or
photometric stereo [4], [5], [6], [7] often assume Lambertian
surfaces, from which the light is equally reflected towards
all directions. However, most real world objects have more
complex reflectances that exhibit view-dependent charac-
teristics (such as specular highlights). These surface violate
the Lambertian assumption and result in erroneous depth
and reflectance estimation.

In recent years, light field has emerged as a powerful tool
in computer vision and graphics for 3D-related applica-
tions. A light field camera can be essentially viewed as a
multi-view device. Notable examples include the hand-held
light field camera [8] and the light field camera array [9]: the
former combines a lenticular lens array and a single high-
resolution sensor with each lenslet emulating a pinhole

camera, while the latter uses multiple cameras in order to
allow for wide baseline and large Field-of-View (FoV)
acquistion. In both settings, the viewpoints are arranged
on rectangular grids. Earlier uses of light field focused on
refocused rendering [8], [10] and view interpolation [11].
More recent approaches have employed light field for 3D
reconstruction [12], [13], [14]. To handle non-Lambertian
reflectance, focus cues [15], angular coherence [16] and
BRDF-invariants [17], [18] are proposed on light field data.
However, additional surface priors such as smoothness or
polynomial shape need to be imposed.

In this paper, we introduce a novel concentric multi-
spectral light field (CMSLF) array that arranges the cameras
on concentric circles. As shown in Fig. 1, each circle of cam-
eras captures images at the same specific spectrum. We
show that by coupling with a multi-spectral ring light, our
CMSLF is advantageous in surface shape and reflectance
reconstruction. This is mainly because 1) through spectral
multiplexing, we are able to simultaneously sample multi-
ple viewpoints under varying lighting directions without
interference; and 2) our concentric viewpoint arrangement
results in a unique single-peak pattern in specularity
variations across views that can be utilized for specularity
analysis and thus enables robust depth estimation for non-
Lambertian points.

We develop tailored algorithms based on our CMSLF
design for surface shape and reflectance estimation. Specifi-
cally, we first formulate a dichromatic Phong reflectance
model under CMSLF using the surface camera (S-Cam)
representation [19]. An S-Cam models angular reflectance
distribution with respect to a 3D scene point. It can be
formed by tracing rays originated from the scene point back
to the captured light field. By analyzing the reflectance
model, we show that diffuse and specular surface points
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exhibit very different characteristics in S-Cam under our
concentric viewpoint arrangement. Specifically, the spec-
ualrity variations across views form a unique single-peak
pattern which can enable robust depth estimation for specu-
lar points. For depth and reflectance estimation, we first ini-
tialize a depth map using multi-view stereo on S-Cams. We
separate the diffuse and specular points by thresholding the
intensity variance (because the diffuse points have constant
intensity across views). We then rely on the single-peak pat-
tern to refine the depths of specular points. Through our
specularity analysis, We can subtract the specular compo-
nents from the captured intensities to form specular-free S-
Cams. We finally apply the photometric cues on the specu-
lar-free S-Cams to jointly estimate the surface normal and
reflectance. We iterate these steps for refinement. We con-
duct extensive synthetic and real experiments to show that
our approach is accurate and robust. We also show that our
method outperforms state-of-the-art multiview-based and
photometric stereo-based methods in shape and reflectance
reconstruction, especially for non-Lambertian surfaces.

2 RELATED WORK

Our work is closely related to reflectance modeling and
image-based surface shape and reflectance reconstruction.

Modeling surface reflectance is important to computer
vision and graphics. The classical method in computer
graphics uses the Lambertian model to characterize diffuse
reflection and the Phong model for specular reflection.
Although this method is not theoretically correct, it is still
widely used and indispensable in computer graphics due to
its simplicity in mathematical modeling. To characterize
complex surface reflectance, the bidirectional reflectance
distribution function (BRDF) [20] that measures the ratio
between incident irradiance and exit radiance at a surface
point is commonly used. The full BRDF model of a point
requires a large parameter space as it exhausts all combina-
tions of incident and exit lighting directions. A special case
of the BRDF model is the dichromatic reflectance model,
which was originally proposed by Shafer [20] to model
dielectrics. It assumes that the BRDF of a surface can be

decomposed into two additive components: the interface
(specular) reflectance and the body (diffuse) reflectance.
Since all wavelength variations can be factorized from the
two components, it is well suited for modeling multi-
spectral reflectance. In our multi-spectral specular analysis,
we combine the dichromatic reflectance model with the
classical Phong model to characterize the surface reflectance
sampled by our CMSLF.

Recovering the surface shape and reflectance from images is
a fundamental problem in computer vision. The most popular
two classes of methods are multi-view photogrammetry [2],
[21], [22], [23], [24], [25], [26] and photometric stereo [4], [5], [6],
[7], [27], [28], [29]. The former ones recover the 3D shape by tri-
angulating rays from multiple viewpoints while the latter per-
form reconstruction under a fixed viewpoint but with various
lighting directions. Although great success has been achieved
on diffuse surfaces, specular highlights pose great challenges
as they violate the color consistency assumption. Some meth-
ods [15], [30], [31] consider specular highlights as outliers and
try to remove them. Some [32], [33], [34] rely on geometric and
color distribution priors to compensate for specular regions. A
recent work by Mecca et al. [35], [36] separates specular points
from pure Lambertian reflection and treat them differently.
However, their approach needs to take many images (around
ten) as input. Oxholm and Nishino [37] recover the shape and
reflectance of the homogeneous surface from a single image
captured under uncontrolled illumination. Fyffe et al. [6] use
spectral multiplexing to perform single-shot photometric ste-
reo. Ikehata et al. [38] andWu et al. [39] use the sparse represen-
tations to solve photometric stereo to compensate the
corruptions caused by specularity. Zuo et al. [40] estimate sur-
face geometry and albedo from RGB-D videos. Chandraker
[41], [42] explores the motion cue for recovering shape and
reflectance of a homogeneous object under a single directional
light source. Wang et al. [17] extend the similar motion cue to
spatial-varying BRDF using light field. Li et al. [18] improve the
optimization framework for shape estimation with BRDF-
invariant features. In this work, we present a novel concentric
multi-spectral light field that is advantageous for handling
non-Lambertian scenes because the concentric setting results
in a unique pattern in specularity variation.

3 OUR APPROACH

In this section, we present our approach for surface shape
and reflectance reconstruction using our concentric multi-
spectral light field (CMSLF). We first present the system
configuration (Section 3.1). We then formulate a physics-
based reflectance model that characterize the CMSLF using
the surface camera (S-Cam) (Section 3.2). Next, we perform
a specularity analysis on our reflectance model and show
that the specularity variations across views exhibit a unique
single-peak pattern. We show that it is useful for the depth
estimation for specular points (Section 3.3). Finally, we
describe our shape and reflectance reconstruction algorithm
for non-Lambertian surfaces (Section 3.4).

3.1 Concentric Multi-Spectral Light Field

As shown in Fig. 1, our CMSLF acquisition system consists
of multi-spectral cameras and light sources that are
arranged on coplanar and concentric circles. Each circle has

Fig. 1. Left: our concentric multi-spectral light field (CMSLF) array. We
arrange the cameras on concentric circles, where each circle has the
same number of cameras that capture at the same specific spectrum.
A multi-spectral ring light surrounding the cameras provides direction-
varying illumination for each camera circle. Right: our reconstruction
results. (a) scene photograph; (b) recovered normal map; (c) recovered
3D surface; and (d) recovered reflectance map.
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the same number of cameras which are uniformly spaced
and capture the same specific spectrum. The surrounding
multi-spectral ring light provides direction-varying illumi-
nation for each camera ring. It’s worth noting that we use
narrowband spectral filters for all cameras and light sour-
ces. We can, therefore, simultaneously sample multiple
viewpoints under varying lighting directions without inter-
ference via spectral multiplexing.

To parameterize the CMSLF, we adopt the classical two-
plane parametrization (2PP) [11] light field representation.
Since our cameras are on coplanar circles, we set the center-
of-projection (CoP) plane as the st plane at z ¼ 0 and the
image plane as the uv plane at z ¼ 1. We use st for camera
indices and uv for pixels.

Assuming we have m concentric camera rings in total
and n cameras on each ring in a CMSLF, the camera position
on the st plane can be written as ðsði; jÞ; tði; jÞÞ ¼ ðrj cosfi;
rj sinfiÞ, where i 2 f1; . . . ; ng is the camera index in each
concentric ring; j 2 f1; . . . ;mg is the ring index, m also is
the total number of spectral samples; rj is the radius of the
jth camera ring; fi ¼ ði� 1Þ~f is the spanned angle between
the ith camera spoke and the x-axis (~f ¼ 2p=n is the interval
angle between neighboring camera spokes). The jth camera
ring captures wavelength �j.

On the illumination side, since the lighting spectra match
the ones sampled by the camera array, the number of point
light sources equals to the number of camera rings (i.e., m).
Assuming the light source ring is on a circle with radius rl,
the position of the jth light source in 3D can be written as
Pj ¼ ½rl cos uj; rl sin uj; 0� where uj ¼ u1 þ ðj� 1Þ~u (u1 is the
angular position of the first light source and ~u ¼ 2p=m is the
angular interval between neighboring light sources).

We use the vector P ¼ ½P1; :::;Pm� to represent the set of
all light source positions. Since we use narrowband spectral
filters, the spectral illumination emitted from the jth point
light source can only be received by the jth camera ring.

3.2 CMSLF Reflectance Model

We then formulate a physics-based reflectance model that
characterize the CMSLF using the surface camera (S-Cam)
representation [19].

3.2.1 Dichromatic Phong Model

We adopt the Dichromatic Reflectance Model (DRM) [43] to
model reflectance. DRM separates the surface reflectance
into body reflectance and interface reflectance, both terms
account for geometry and color. DRM is suitable for model-
ing inhomogeneous materials.

Given a light source with the spectral distribution Eð�Þ
where � refers to the wavelength, and a camera with spec-
tral response function Qð�Þ, the observed image intensity I
under DRM at pixel p can be formulated as:

IðpÞ ¼ wdðpÞ
Z �N

�1

Rðp; �ÞEðp; �ÞQð�Þd�

þ wsðpÞ
Z �N

�1

Eðp; �ÞQð�Þd�;
(1)

where ½�1; �N � is the range of sampled wavelengths; Rðp; �Þ
is the surface reflectance; wdðpÞ and wsðpÞ are geometry-

related scale factors. The first term in Eq. (1) represents
body reflectance that models light reflection after interacting
with the surface reflectance. The second term represents
interface reflectance that models light immediately reflected
from the surface and thus causing specularities.

We apply numerical integration with step ~� on Eq. (1)
which, after dropping pixel p becomes:

I ¼ wdREQþ wsJEQ (2)

where J is a row vector with all ones, R ¼ ½Rð�1Þ; Rð�1 þ ~�Þ;
. . . ; Rð�NÞ�, E ¼ diagðEð�1Þ; Eð�1 þ ~�Þ; . . . ; Eð�NÞÞ which is
a diagonal matrix, andQ ¼ ½Qð�1Þ Qð�1 þ ~�Þ; . . . ; Qð�NÞ�T .

To take the scene geometry into consideration, we formu-
late the Phong dichromatic model that combines the classi-
cal Phong model with the DRM and assumes the near point
lighting (NPL). Specifically, the diffuse and specular factors
wd and ws are modeled with lighting position, viewing
direction, surface normal and roughness. The image inten-
sity I can then be written as:

I ¼ kd

 
L �N

kP �Xk2
!
REQþ ks

 
ðD � V Þa
kP �Xk2

!
JEQ; (3)

whereN is the surface normal at a 3D pointX; P is the posi-
tion of light source; L ¼ ðP �XÞ=kP �Xk is the normalized
lighting direction; V is the viewing direction; D ¼ 2ðL �NÞ
N � L is the reflection direction; a is the shininess parame-
ter that models the surface roughness; kd and ks refer to the
diffuse and specular surface reflectivity.

3.2.2 Multi-Spectral Surface Camera (MSS-Cam)

Next, we apply the Phong dichromatic reflectance model on
our CMSLF using the Surface Camera (S-Cam) [19]. S-Cam
characterizes the angular sampling characteristics of a light
field. Given a 3D scene point, its S-Cam can be synthesized
by tracing rays originated from the scene point into the light
field to fetch color (see Fig. 2).

Fig. 2. Multi-spectral Surface Camera (MSS-Cam) sampling. Top: MSS-
Cam sampled at the correct depth; Bottom: MSS-Cam for the same
point but sampled at an incorrect depth.
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After applying the S-Cam on our CMSLF, we obtain the
multi-spectral S-Cam (MSS-Cam). We now present the
MSS-Cam image formation using our dichromatic Phong
model. Given a pixel ðu; vÞ in the center camera view with
position ðs; tÞ ¼ ð0; 0Þ, and assuming its corresponding 3D
scene point is Xðu; v; zÞ ¼ ðx; y; zÞ, we can synthesize its
MSS-Cam MX from the captured multi-spectral light field
images. The pixels in a column of MX are taken from cam-
eras on the same ring that is sampled under a specific spec-
trum according to our concentric camera/light source
arrangement. Moreover, each column captures the specular
variation with respect to a single light source for non-Lam-
bertian points. The pixels in the same row of MX are taken
from cameras on different rings but at the same camera
spanned angle. To obtain MSS-Cam, we trace rays from the
point X to each camera in the CMSLF. For a pixel ði; jÞ in
the MX , it samples the ray from the camera at ðsði; jÞ; tði; jÞÞ.
By applying Eq. (3) , we can write the intensity at an MSS-
Cam pixelMXði; jÞ as:

MXði; jÞ ¼ kd

 
Lj �N

kPj �Xk2
!
cBjEjQj

þ ks

 
ðDj � Vi;jÞa
kPj �Xk2

!
JEjQj;

(4)

where Vi;j is the viewing direction from the X to the camera
ðsði; jÞ; tði; jÞÞ; Dj is the reflection direction of Lj; cBj ¼ R
indicates the linear decomposition of the reflectance spectra
R, with c ¼ ½c1; . . . ; cw� as the reflectance coefficient vector
and Bj as a w� h linear reflectance basis matrix under the
spectral range ½�j � ðh�1Þ

2
~�; �j þ ðh�1Þ

2
~��. Ej and Qj have the

same spectral range and are with sizes h� h and h� 1
respectively.

3.3 Specularity Analysis

We now perform a specularity analysis on MSS-Cam and
show that the specularity variation across views exhibits a
unique single-peak pattern that is useful for specular region
depth estimation.

We first separate the diffuse and specular points by
thresholding the intensity variance because the diffuse
points have constant reflectance across views. Fig. 2 shows
that the MSS-Cam sampled at the correct scene depth exhib-
its photo consistency for ideal diffuse points (same intensi-
ties for pixels at the same column) and smooth intensity
variations for specular points. If MSS-Cam is sampled at an
incorrect depth, rays are integrated from different surface
points. This results in random fluctuation of intensities in
the MSS-Cam. The photo consistency for diffuse points in
an MSS-Cam imageMX can be formulated as:

CðMXÞ ¼ 1

m

Xm
j¼1

stdðMXð1; jÞ; . . . ;MXðn; jÞÞ; (5)

where stdð�Þ is the standard deviation function. This func-
tion indicates that the standard deviation for pixels taken
from the same column should be very close to 0 if the point
is diffuse and the MSS-Cam MX is sampled at the correct
depth. We therefore set a threshold on CðMXÞ to separate
diffuse and specular points.

For specular points, we show that the specularity varia-
tion across views exhibits a unique single-peak pattern
because of the concentric configuration of cameras. Intui-
tively, as shown in Fig. 3a, the cone-shaped lighting direc-
tions result in a reflection cone that is symmetric to the
normal. Since the light field camera sampling for each spec-
trum is on a circle, the intensities from each column of the
MSS-Cam will be changing like a sinusoidal curve with the
camera’s sampling angle f from 0 to 2p in the circle (see
Fig. 3b). Below we formalize this property as a proposition
and provide its proof.

Proposition 1. The specularity variation along the column of a
MSS-Cam always forms a single-peak function.

Proof. For simplification, we consider a specular point in
3D, X ¼ ½0; 0; z�, with the surface normal N . Its MSS-Cam
MX sampled at the correct scene depth can be formulated
by applying Eq. (4). Now we analyze the intensity varia-
tion along the jth column of its MSS-Cam under the sepc-
tral light source j at Pj ¼ ½rl cos uj; rl sin uj; 0�. Assuming
the normalized lighting direction is L, and the reflection
direction w.r.t. the surface normal is D ¼ ½dx; dy; dz�. The
camera position from the camera ring is ½rj cosf;
rj sinf; 0�. The viewing direction can be computed as

V ¼ ½rj cosf; rj sinf;�z�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ z2

q
. The diffuse compo-

nent and the term ksJEjQj=kPj �Xk2 in the specular com-

ponent in Eq. (4) are constants cd and cs along the jth

column of the MSS-Cam, therefore, the intensity along
the jth column of the MSS-Cam can be rewritten as:

IðfÞ ¼ cd þ csðD � V Þa

¼ cd þ cs

ðr2j þ z2Þa2
ðrjdx cosfþ rjdy sinf� zdzÞa

¼ cd þ cs

ðr2j þ z2Þa2
ðcv sin ðfþ ~fÞ � zdzÞa;

(6)

where

cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrjdxÞ2 þ ðrjdyÞ2

q

sin ~f ¼ dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ d2y

q ; cos ~f ¼ dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ d2y

q :

The terms cd and cs=ðr2j þ z2Þa2 are constants along each
column of the MSS-Cam. Therefore we can see that the

intensity variation along a column of the MSS-Cam is an

exponential sinusoidal curve w.r.t. the camera’s angle f

in the ring, which is a single-peak function in the interval

of ½0; 2p�. tu
Notice that this proposition will not be affected by the

arrangement of multi-spectral light sources. The spectral
arrangement results in different shape of the curve because
it changes the column ordering, but curve always remains
one period of a sinusoid. Further, since the sin nð�Þ can be
expanded as the Fourier series, we can approximate Eq. (6)
as a Fourier series w.r.t. the camera’s angle f in the ring as:
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IðfÞ � F ðfÞ ¼ a0 þ
X
p

ap cos pfþ
X
p

bp sin pf: (7)

We therefore fit a set of Fourier series F1; . . . ; Fm to model
intensity variation of specular point per column in the MX.
On the other hand, as is shown in Figs. 3b and 3e, by taking
the camera spanned angles corresponding to the peaks
from each specularity curve, we can form a similar sinusoi-
dal curve. We then fit another Fourier series F0 to represent
this curve of peak camera angles. Therefore, if a point is
specular, its intensity in MSS-Cam should follow the consis-
tency measurement below:

SðMXÞ ¼ 1

m

Xm
j¼1

kUðjÞ � FðjÞk þ kF� Fð0Þk; (8)

where UðjÞ ¼ ½MXð1; jÞ; . . . ;MXðn; jÞ� are MSS-Cam pixels
from the same column, FðjÞ ¼ ½Fjðf1Þ; . . . ; FjðfnÞ� is the fit-
ted Fourier series for this column. F ¼ ½fð1Þ

s ; . . . ;fðmÞ
s � are

camera spanned angles corresponding to the peaks from
each column, and Fð0Þ ¼ ½F0ð1Þ; . . . ; F0ðmÞ� is the Fourier
series fitted for them.

3.4 Shape and Reflectance Reconstruction

Finally, we show how to apply the CMSLF reflectance
model and the specularity analysis on MSS-Cam for robust
surface shape and reflectance reconstruction. Our recon-
struction pipeline is shown in Fig. 4.

Depth Initialization. Given a pixel ðu; vÞ and its corre-
sponding 3D point Xðu; v; zÞ in the virtual center view at
[0,0,0]. We first apply our photo-consistency measurement

on the MSS-Cams with every hypothetical depth z of X to
initialize its depth as:

z0 ¼ argmin
z

CðMXÞ: (9)

We classify this point as diffuse or specular point by
thresholding the intensity variance across views. If a point
is non-Lambertian, we use Eq. (8) refine its depth as:

z0 ¼ argmin
z

SðMXÞ: (10)

Note that we only perform Fourier series fitting for non-
Lambertain points because this process is time consuming
and applying it for all pixels would be inefficient.

Specular Component Subtraction. For non-Lambertain
point, given its inital depth, we retrieve its MSS-Cam and
then subtract the specular component to obtain a specular-
free MSS-Cam. Specifically, we first compute the vertical
gradients of the MSS-Cam to remove the diffuse component
in Eq. (4) as:

rMXði; jÞ ¼
�
MXðiþ 1; jÞ �MXði; jÞ

�

¼ ksððDj � Viþ1;jÞa � ðDj � Vi;jÞaÞ
JEjQj

kPj �Xk2 :

(11)

By rearranging Eq. (11), we have:

GXði; jÞ ¼ rMXði; jÞ kPj �Xk2
JEjQj

; (12)

where GXði; jÞ ¼ ksððDj � Viþ1;jÞa � ðDj � Vi;jÞaÞ.
Given the pre-calibrated term JEjQj and the lighting

position Pj (the calibration process is described in
Section 4.2.2), and the calculated gradients, we compute the
observed ~GX to optimize the surface normal N , specular
reflectivity ks and surface roughness a simultaneously
through the following objective function:

argmin
N;a;ks

X
i;j

k ~GXði; jÞ � ksððDj � Viþ1;jÞa � ðDj � Vi;jÞaÞk;

(13)

where Dj ¼ 2ðLj �NÞN � Lj. As this optimization is non-
linear, we can apply the Levenberg-Marquardt method to
solve the specular parameters that satisfy the specularity
gradient variations.

Given these specular parameters, we can then subtract
the specular components from our MSS-Cam and form a
specular-free MSS-Cam AX as:

Fig. 3. The specularity variations in MSS-Cam exhibit unique pattern in
our CMSLF. (a) The cone-shaped lighting directions result in a reflection
cone that is symmetric to the normal. (b) Because of concentric camera
setting on circles, the intensities from each column of the MSS-Cam will
be changing on a sinusoidal curve (single-peak in the interval ½0; 2p�). (c)
An MSS-Cam with specularity. (d) We plot the pixel intensities from the
same MSS-Cam column and show that they form single-peak patterns.
(e) The camera spanned angles corresponding to the peaks of each
curve in (d) form a sinusoidal curve.

Fig. 4. The algorithmic pipeline for shape and reflectance reconstruction.
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AXði; jÞ ¼ MXði; jÞ � ks

 
ðDj � Vi;jÞa
kPj �Xk2

!
JEjQj: (14)

We form a row vector AX ¼ ½medianðAXð:; 1ÞÞ; . . . ;
medianðAXð:;mÞÞ� by taking the median values from each
column of AX .

Normal and Reflectance Refinement. Finally, we apply
multi-spectral photometric stereo on our specular-free MSS-
Cam to obtain more accurate surface normal and reflec-
tance. Our objective function is formulated as:

argmin
N;c

ððcWÞ � ðLNÞT �AXÞ; (15)

where � is Hadamard product (element-wise multiplica-
tion), L ¼ ½L1; :::;Lm�. The term W ¼ ½W1; . . . ;Wm� where
Wj ¼ BjEjQj, which is composed of the pre-calibrated cam-
era and light source spectral responses. When the number
of sampled spectra is greater than or equal to the dimen-
sions of the reflectance spectra, that is w� 34m, the above
optimization can be formulated as an over-determined lin-
ear system. We can write the following linear system by
unrolling the matrices in Eq. (15):

b ¼ H nAT
X; (16)

where

H ¼
Wð1; 1ÞLð1; 1Þ Wð1; 1ÞLð1; 2Þ Wð1; 1ÞLð1; 3Þ . . . Wðw; 1ÞLð1; 3Þ
Wð1; 2ÞLð2; 1Þ Wð1; 2ÞLð2; 2Þ Wð1; 2ÞLð2; 3Þ . . . Wðw; 2ÞLð2; 3Þ

..

.

Wð1;mÞLðm; 1Þ Wð1;mÞLðm; 2Þ Wð1;mÞLðm; 3Þ . . . Wðw;mÞLðm; 3Þ

2
66664

3
77775

b ¼ ½c1nx; c1ny; c1nz; . . .; cwnx; cwny; cwnz�T :

The surface normal and reflectance coefficients can be
directly derived from b. Otherwise, when w� 3 > m, we
apply the Levenberg-Marquardt algorithm to solve Eq. (15).

After recovering the surface normal, we update the
depth estimation through normal integration. We then re-
compute all MSS-Cams with the updated depths and repeat
the above steps to iteratively refine the shape and reflec-
tance estimation.

For multi-spectral reflectance estimation, we fit a dense
multi-spectral reflectance R ¼ c0B using the estimated
reflectance coefficients c0. B are the dense spectral sampling
reflectance basis functions determined on the Munsell color
sets [44], [45].

4 EXPERIMENTS

In this section, we present synthetic and real experimental
results to evaluate our approach. All experiments are per-
formed on a desktop computer with Intel i7 7820 CPU
(2.9GHz Quad-core) and 32G memory. Our algorithm is
implemented in Matlab. Although we are able to recover
multi-spectral reflectance, we still show the reflectance
maps in RGB for the ease of visualization.

4.1 Synthetic Experiments

To simulate our CMSLF images, we implement a multi-
spectral renderer to generate the input images. We consider
the same camera and light source setup as used in our real
experiments (described in Section 4.2.1). To simulate multi-
spectral reflectance from RGB textures, we use high-dimen-
sional reflectance linear basis to fit the missing spectra.

We first work on a simple sphere object with three differ-
ent types of reflectance: ideal diffuse (Type I), specular
(Type II) and specular with texture (Type III) (see Fig. 5).
Through this experiment, we show that our approach can
be applied to a variety of surface materials. In the material
setting, the diffuse coefficients are all set to 0.7; the specular
coefficients for each material are set to 0, 0.3, and 0.5 for
Types I to III respectively; and the roughness for Type II/III
is set to 10. The radius of the sphere is set to 20 units and the
distance between the CMSLF and sphere is 120 units. As for
our CMSLF, the radius of our ring light source is 80 units
and contains 12 spectral light sources. We use a 12� 8 con-
centric camera array (i.e., 12 circles with 8 cameras on each
circle). The radius of the concentric camera circles ranges
from 29 to 40 units with interval 1 unit for each circle in
between. We consider spectral samples between wave-
length 440 nm to 660 nm with interval 20 nm for both cam-
eras and light sources. For each camera, we simulate image
of the object at resolution 320� 320. For depth estimation,
we discretize the depth values from 108 to 125 units with
step 0.2. Our sphere has 76 depth layers. We apply our algo-
rithm described in Section 3.4 to recover the shape and
reflectance for the three types of sphere. Our reconstruction
results are shown in Fig. 5. To evaluate our shape recon-
struction, we compare our recovered normal maps with the
ground truth ones and compute the error maps. The maxi-
mum normal error is less than 2� for all three cases. To eval-
uate the reflectance reconstruction, we plot the multi-
spectral reflectance curve for a randomly sampled point on

Fig. 5. Synthetic results of a sphere object with three types of materials.
Top: we show the input image of the sphere models, the recovered nor-
mal map, the error map of normal estimation in degree, and the recov-
ered reflectance (from left to right); Bottom: we show the multi-spectral
reflectance curve (red) of a randomly sampled point on each sphere in
comparison with the ground truth reflectance curve (blue).

ZHOU ETAL.: SHAPE AND REFLECTANCE RECONSTRUCTION USING CONCENTRIC MULTI-SPECTRAL LIGHT FIELD 1599

Authorized licensed use limited to: University of Canberra. Downloaded on June 07,2020 at 21:35:17 UTC from IEEE Xplore.  Restrictions apply. 



the sphere. We compare the curve with the ground truth
reflectance we set for the object. We can see that the two
curves are highly close for all three cases, which indicates
that our method recovers accurate multi-spectral reflectance
for various materials.

To evaluate our performance on more complex material
models, we perform experiments using the MERL dataset
[46]. We use the same sphere and CMSLF setting, except
that we use the BRDF functions in the MERL dataset for
material modeling. We evaluate the reconstruction error
for all materials. The average normal error is 3.8�. The
complete set of results are included in the supplementary
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2020.2986764.

Next, we perform synthetic experiments on two objects
with more complex geometries, a Buddha head (or buddha)
and an antique pendant plate (or plate). For these experi-
ments, our light source setting and spectral sampling
scheme are the same as the sphere object experiment. For
the CMSLF, the radius of the camera circles range from 4 to
2.9 with step 0.1. Each camera renders images at a higher
resolution (500� 500) to capture the fines details of the
objects. For surface material, we set the specular coefficients
to 0.6 (buddha) and 0.4 (plate). The roughness is set to 20
for both. The distances between objects and camera are 41
(buddha) and 34 (plate). We discretize the depth values in
the range from 35 to 42 with step 0.1 for the buddha and
from 33 to 35 with step 0.1 for the plate. Our shape and
reflectance reconstruction results are shown in Fig. 6. We
evaluate our shape reconstruction in terms of normal errors
and we can see that the maximum normal error is less than
3� for both objects. We also show our recovered 3D surfaces.
We can see that the geometric details are well preserved.
We re-render the diffuse images to show that our recovered
reflectance is highly accurate.

We compare our shape reconstruction with two state-of-
the-arts light field-based depth estimation methods [30] and
[18]. Tao et al. [30] use specular properties in the epipolar
plane images (EPI) to recover glossy surfaces with light
field. Li et al. [18] develop an optimization framework to

recover the shape and reflectance for surfaces with spatial
varying BRDF. Both methods are expected to handle non-
Lambertian surfaces well. We render 12� 12 grid-based
light field images and use them as input to the two methods.
We use the source codes provided by the authors for testing.
The comparison results on buddha is shown in Fig. 7. We
can see that our recovered 3D surfaces are with higher qual-
ity. This is mainly because of two reasons: 1) our concentric
circular light field setting provide addition photometric
cues for non-Lambertian points depth estimation; and 2)
our multi-spectral sampling scheme provides more diverse
lighting and viewpoint samples, which allows for more
robust shape and reflectance reconstruction.

Finally, we analyze the performance of our approach
with respect to different numbers of cameras, light sources
and image noises. Theoretically, the minimal setup of
CMSLF requires 5 multi-spectral light sources and 5� 3
concentric camera array (i.e., five camera rings and three
cameras on each ring) for recovering the surface shape and
reflectance. In practice, more multi-spectral light sources as
well as cameras can help improve the reconstruction

Fig. 6. Synthetic results for the buddha and plate. From left to right, we show the input model images, recovered normal maps, the recovered normal
maps, the error maps of normal estimation in degree, the recovered 3D surfaces and the recovered reflectance images.

Fig. 7. Comparison results on synthetic data. We compare the recovered
depth map and 3D surfaces with two state-of-the-arts light field-based
methods [30] and [18].
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accuracy. Therefore, we perform experiments by changing
CMSLF settings to understand the impact of number of
cameras and light sources. We use the sphere model with
Type III material as the reconstruction target. First, we fix
the number of multi-spectral light sources to 12 and change
the number of cameras on each circle from 4 to 16 to evalu-
ate the system performance. The reconstruction error line
plots are shown in the first row of Fig. 8. We can see that
although both the depth and normal errors decreases as the
number of cameras increases, the improvement becomes
marginal when the number of cameras is greater than 8 on
each circle. We then fix the number of cameras to 8 and vary
the number of multi-spectral light sources from 5 to 15. The
reconstruction error line plots are shown in the second row
of Fig. 8. We can see that the accuracy improvement
becomes marginal when the number of light sources is
greater than 12. Therefore we conclude that the optimal con-
figuration for CMSLF is to use 12 multi-spectral light sour-
ces and 8 cameras in each circle. We use this configuration
to build our real prototype system. We also evaluate the
performance with respect to image noise. We add zero-
mean Gaussian noise with different variances (0 	 0.4) to
the input images. The reconstruction error line plots are
shown in the third row of Fig. 8. We can see that both the
reflectance and normal errors increases as the noise level
goes up. The normal estimation is more sensitive to noise
than the reflectance.

4.2 Real Experiments

We perform experiments on various real scenes using a
CMSLF system prototype.

4.2.1 System Configuration

We construct a CMSLF using customized hardware. Our
prototype system is shown in Fig. 9. To emulate the concen-
tric multi-spectral light field camera array with a single
camera, we mount a monochrome camera (Point Grey GS3-
U3-51S5M-C) with a 50mm lens on a translation stage to
move the camera to specific positions on concentric circles

on a 2D plane (i.e., the st plane). Specifically, we emulate a
12� 8 concentric camera array (i.e., 12 circles with 8 cam-
eras on each circle). We mount a tunable liquid crystal spec-
tral filter (KURIOS-WL1) in front of the camera to capture
the scene under specified wavelengths. The horizontal field-
of-view of the camera is 13� and the resolution of the cap-
tured image is 2448 � 2048. According to the dimension of
our system, the optimal acquisition distance is to place the
target around 100cm away from our system.

To build the multi-spectral ring light, we mount twelve
30 Watt LED chips onto a dodecagon frame, the distance
between each LED chip and the center of the dodecagon is
50cm. We then place 12 narrow-band spectral filters with
wavelengths ranging from 450 nm to 670 nm with step
20 nm in front of the LED chips to emit multi-spectral illumi-
nation. We arrange the spectral filters such that the shading
variation along the illumination ring for a fluctuated curve
with respect to the wavelength, as shown in Fig. 10. This is
because we need to reduce the ambiguity on reflectance and
shading variation separation in Eq. (15).When themulti-spec-
tral lights are arranged in this way, the surface normal can be
more easily converged to the global optimum.

4.2.2 System Calibration

Weneed to perform geometric and photometric calibration on
our system. Specifically,we calibrate the camera intrinsics and
extrinsics, the light sources’ 3D positions and spectral
responses. The reflectance basis functions and camera spectral
response are also pre-computed in the calibration process.

Fig. 8. Performance analysis with respect to the number of cameras,
light sources and image noise.

Fig. 9. (a) Our prototype concentric multi-spectral light field (CMSLF)
system. (b) The illumination spectra of our multi-spectral ring light
source. (c) Sample multi-spectral images captured with our CMSLF.

Fig. 10. Our desired multi-spectral light source arrangement. The shad-
ing variation of the light sources with respect to the wavelength form a
fluctuated curve.
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Camera Calibration. We first calibrate the camera intrinsic
and extrinsic parameters using traditional camera calibra-
tion method [47]. The camera is then moved to specific
positions on concentric circles with a high-precision 2D
translation stage.

Light Source Calibration. To calibrate the light source posi-
tions, we first move the camera to the center of the concen-
tric circle. For each light source, we capture a sequence of
images with a chrome ball at different locations. In each
image, we detect the specular spot on the chrome ball as an
incident point. We then compute the incident ray direction
using the reflection ray direction (i.e., the camera ray) and
the surface normal. The light source position can then be
determined by backtracing all incident rays from the image
sequence to form an intersection point. Intuitively, this pro-
cedure needs to be repeated for every light source. In prac-
tice, we capture the images for all light source in one pass
through spectral-multiplexing.

Spectral Calibration. In this step, we calibrate the mixed
spectral response Wj ¼ BjEjQj (where Ej is the light
source’s spectral response andQj is the camera’s) by captur-
ing images of the standard colorchecker chart for each spec-
tral light. As we know the ground truth reflectance
response of the color swatches, we can apply PCA to extract
the coefficient vector for each color and combine them
together to a coefficients matrix C ¼ ½c1; :::; c24� with size
24� w (where 24 is the total number of color swatches), we
also can get the dense spectral reflectance basis B. For the
jth spectral light source, we adjust our tunable spectral filter
in front of the camera to capture the color checker only
under its specific spectrum. With the known checker posi-
tion and the light position, we can eliminate the shading
term ðLj �NÞ=kPj �Xk2. We then average the intensities
without shading components for each color swatch to form
a vector I 0j with size is 24� 1. We can solve Wj by optimiz-
ing the following objective function:

argmin
Wj

ðCWj � I 0jÞ: (17)

We perform this optimization for all spectra and obtain
W ¼ ½W1; . . . ;Wm�. The spectral response EjQj can then be
computed from the calculated Wj with the known reflec-
tance responses.

We evaluate our spectral calibration by comparing our
estimated spectral responses for the colorchecker chart with
the ground truth ones. The results are shown in Fig. 11.

From our sample results, we can see that our spectral esti-
mations are highly accurate. The estimation accuracy is
lower for the dark gray and black checkers because their
captured intensities are low resulting in low signal-noise
ratio in the capture images.

4.2.3 Results

Here we present real scene results using our CMSLF system.
We use our prototype CMSLF system to capture objects
with diverse reflectances, ranging from diffuse to highly
specular. Our shape and reflectance reconstruction results
are shown in Fig. 13. We can see that our approach works
well for specular objects, such as ceramic figurine and plas-
tic toys. We also compare our recovered 3D surfaces with
state-of-the-arts light field-based methods [18], [30] and
photometric stereo-based methods [6], [38], [39], [48]. The
visual comparison results of the recovered 3D surfaces are
shown in Fig. 14. Specifically, both light field-based meth-
ods are expected to handle specularity well. Among the
photometric stereo-based methods, [48] and [6] are not
designed to recover non-Lambertian surfaces; [38] and [39]
compensate the corruption caused specularity with sparse
solvers. We can see that our approach outperforms all these
methods. This shows that our concentric mutli-spectral light
field setting is advantageous.

To better understand our algorithm, we show the interme-
diate depth estimation results from three examples in Fig. 12.
The “initial depth” is the depth map initialized with the
photo-consistency constraint. As this constraint only works
for diffuse points, we can notice erroneous depth estimations
for specular points. The “refined depth” refers to the estima-
tion that refines the depths for specular points using the sin-
gle-peak curve. We can notice obvious improvement on
specular points. The “final recovered depth” is our final result
after iterative refinement.

We also quantitatively evaluation our shape and multi-
spectral reflectance reconstruction using a standard color-
checker chart. We compare our method with the multi-
spectral photometric stereo [6]. The results are shown in
Table 1. We can see that both the normal errors and reflec-
tance errors of our method are significantly smaller.

Fig. 11. Evaluation of spectral calibration results. We perform spectral
calibration using standard colorchecker chart. We evaluation our calibra-
tion results by comparing our estimated spectral response for the color
checker with the ground truth ones.

Fig. 12. Depth maps from each step of our algorithm.
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Fig. 13. Real experiment results. From left to right, we show the input model images, recovered normal maps, the recovered normal maps, the
recovered 3D surfaces and the recovered reflectance images.

Fig. 14. Visual comparison of recovered 3D surface with state-of-the-arts light field-based methods [18], [30] and photometric stereo-based methods
[6], [38], [39], [48].
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5 CONCLUSION AND DISCUSSIONS

In summary, we have presented a concentric multi-spectral
light field (CMSLF) based method for surface shape and
reflectance reconstruction. We’ve shown that our concentric
camera and light source setting results in a unique single-
peak pattern in specularity variations across views. The pat-
tern allows for robust depth estimation for specular points.
Through comprehensive synthetic and real experiments, we
show that our method can achieve highly accurate and
robust results for non-Lambertian surfaces.

However, our method has limitations in handling occlu-
sions and shadows. Our shape and reflectance reconstruc-
tion accuracy will be degraded if a point is in shadow (see
occluded regions in the ceramic girl figurine scene in
Fig. 13). One promising future direction is to exploit charac-
teristics of occluding boundaries in our CMSLF and develop
reconstruction algorithms that are robust to occlusions. Our
current prototype system is bulky and requires moving the
camera with a translational stage to simulate the concentric
light field. In the future, we plan to build a CMSLF system
using an array of cameras with spectral filters to realize sin-
gle-shot acquisition.
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