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(a) subjects lit by real outdoor environment (b) subjects lit by calibrated VP stage (baseline) (c) subjects lit by calibrated VP stage (our method)

Figure 1: (a) Subjects in colorful clothing with a color chart and lighting reference spheres in an outdoor environment. (b)
The same subjects in an RGB LED virtual production stage lit by color-matched imagery of the environment, showing color
rendition errors in clothing colors and skin tones. (c) The subjects in an RGB LED virtual production stage calibrated using
our technique to optimize both color rendition accuracy and in-camera background appearance.

ABSTRACT
While the LED panels used in today’s virtual production systems
can display vibrant imagery within a wide color gamut, they pro-
duce problematic color shifts when used as lighting due to their
"peaky" spectral output from narrow-band red, green, and blue
LEDs. In this work, we present an improved color calibration pro-
cess for virtual production stages which ameliorates this color
rendition problem while also maintaining accurate in-camera back-
ground colors. We do this by optimizing linear color correction
transformations for 1) the LED panel pixels visible in the camera’s
field of view, 2) the pixels outside the camera’s field of view illumi-
nating the subjects, and – as a post-process – 3) the pixel values
recorded by the studio camera. The result is that footage shot in an
RGB LED panel virtual production stage can exhibit more accurate
skin tones and costume colors while still reproducing the desired
colors of the in-camera background.

CCS CONCEPTS
• Computing methodologies→ Image-based rendering.
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1 INTRODUCTION AND RELATEDWORK
Virtual Production. Although the term Virtual Production (VP) refers
to a cadre of novel, technology-driven film-making methods, many
recent incarnations employ LED stages or "volumes" to surround
actors with imagery of virtual film locations. This technique, cast
as an alternative to filming in a greenscreen studio or on location,
has exploded in popularity for both film and television produc-
tion [Holben 2020; Kadner 2021a,c]. One benefit of the technique

is that an actor may be photographed against a high-resolution
background image shown on the LED panels, called filming an
in-camera background. This process can remove significant post-
production compositing work as compared with the traditional
workflows involving chromakeying, rotoscoping, and matting.

Beyond the in-camera background, an additional goal of filming
inside an LED volume is to perform lighting reproduction, where in-
dividual light sources surrounding an actor are driven to reproduce
the illumination of a given scene [Debevec et al. 2002; Hamon et al.
2014]. When displaying a high dynamic range, image-based lighting
(HDR IBL) environment [Debevec 1998], a lighting reproduction
system can generally match the subject’s appearance to how they
would appear in a real-world environment. An added benefit is that
actors may feel more immersed in the scene, potentially enhancing
their performances and providing natural eyelines compared to
filming in a greenscreen studio.

Color Rendition Challenges. Although LED volumes have enabled
a whole new way to produce filmed content, cinematographers
are becoming increasingly aware of color rendition challenges that
come with using these systems for lighting reproduction, as re-
cently noted and observed by Noah Kadner and Craig Kief in their
American Cinematographer article "Color Fidelity in LED Volumes"
[Kadner 2021b]. Most notably, in an LED volume, lighter skin tones
shift towards pink and darker skin tones towards red. Orange ma-
terials also shift toward red, cyan materials shift toward blue, and
yellow materials darken. For an example, see Fig. 2.

The Unusual Spectra of RGB LEDs. These color rendition errors are
the result of the unusual emission spectra of the RGB LEDs that
comprise LED panel based VP stages. Unfortunately, while RGB
LED panels have been designed for and perform well at displaying
imagery within a wide gamut of colors, they cannot reproduce any
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(a) indoors, natural light (b) RGB LED VP stage

Figure 2: (a) a subject illuminated by indoor daytime natu-
ral lighting; (b) reproducing the illumination inside an RGB
LEDVP stage, with noticeable color rendition errors for skin
tones and yellow and orange patches on the subject’s shirt.

desired target illuminant spectrum. In particular, the emission spec-
tra of most real-world illuminants (e.g. daylight and white LEDs,
see Fig. 3) are relatively broad, covering most of the visible light
wavelength range. In contrast, by combining different amounts
of light produced by RGB LEDs, one will only be able to produce
illumination with relatively “peaky" emission spectra, with distinct
gaps between the spectra of each LED channel [see Fig. 3(d)]. Be-
cause the world acts as a "spectral renderer," color rendition errors
for yellow and cyan materials are the result of these gaps in the
LED emission spectra, while for skin tones an added culprit is the
relatively long wavelength of red LEDs that illuminate skin where
it is considerably more reflective.

(a) daylight (D65) (b) cool white LED

(c) RGB LED units (d) RGB LED

Figure 3: The emission spectra of (a) daylight (D65); (b) a
broad-spectrum cool white LED; and (d) a typical RGB LED,
with a zoomed-in viewof anLEDpanel showing anRGBLED
package at each pixel in (c).

Filling in Spectral Gaps. For a single light source and an omnidirec-
tional light stage respectively, Wenger et al. [2003] and LeGendre et
al. [2017; 2016] demonstrated improved color rendition by adding
spectral channels beyond RGB to fill in these spectral gaps. Sim-
ilarly, cinema light source manufacturers also incorporate broad-
spectrum LEDs (e.g. white) in their RGB-based light sources to
improve color rendition. Unfortunately, these are essentially no
manufactured LED panel manufacturers that have followed suit,

as panel designs are optimized for a wide display gamut, where
adding a broad-spectrum white LED is unnecessary as its color can
already be produced by mixing RGB LEDs.

LED Panel Calibration Workflows. Without adding spectral chan-
nels, digital imaging technologists color calibrating a typical RGB
LED VP stage aim to make colors in the content to be displayed
actually appear those colors to the camera. This calibration process
considers both the spectral sensitivity of the motion picture camera
and the emission spectra of the RGB LEDs, although it typically
requires no spectral measurements. In similar processes described
by Unreal Engine [2022] and by Weta Digital (sec. 3.3.3.1, Weidlich
et al. [2021]), a patch of each color primary displayed by the pan-
els is recorded by the camera. Then, a color transform (often a
3 × 3 matrix) is computed to apply to the input RGB pixel values
in the content to be displayed, to ensure that the camera-recorded
color primaries match the content’s color primaries. As noted in
Debevec et al. [2002], if the primaries match, then all other colors
including white must match as well, as all others are simply a linear
combination of the three primaries.

This primary-based calibration process is ideal when the goal is
simply to use the LED panels as a display system, say, for filming an
in-camera background. However, difficulties arise as these panels
are used for lighting reproduction. Now we must consider how they
illuminate actors and their costumes.

Using a Calibrated RGB LED Panel as a Light Source. As an example,
say we photograph a color chart lit by daylight (see Fig. 4a) along
with the scene’s corresponding HDR IBL. From the chart’s white
square, we can extract an RGB pixel value 𝑤 that represents the
average color of the scene’s illumination (specifically, for the hemi-
sphere of lighting directions facing the color chart). We know that a
color chart placed in a VP stage displaying the HDR IBL, calibrated
using the above technique, will have a white square value that
matches𝑤 (see Fig. 4b). In this case, the real and reproduced illumi-
nants are metamers: matching colors with non-matching spectral
power distributions. However, the spectrum of the lighting repro-
duced in the VP stage will be quite different from that of real-world
daylight, and so the colors of any non spectrally flat / non-neutral
color chart squares will be unlikely to match. The comparison visu-
alization in Fig. 4c shows this effect. A virtual color chart displayed
by the panels would appear largely correct; only the real color chart
lit by the LED panels would exhibit these color rendition errors.

(a) real environment (b) RGB LED VP (c) sampled from (a, b)

Figure 4: (a) a color chart photographed in a real outdoor
environment; (b) photographed in a VP stage reproducing
the target illumination using RGB LEDs and a standard
primary-based calibration process; (c) comparison between
(a) and (b). Background squares are pixel values sampled
from (a) and foreground circles are pixel values sampled
from (b). Although thewhite squaresmatch (the illuminants
aremetameric matches), the remaining color squares do not.
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Our Approach. With these color rendition challenges in mind, we
propose a novel technique for the color calibration of an RGB LED
stage using a set of linear transformations represented as 3×3 color
correction matrices. Our primary goal is to optimize the color rendi-
tion properties of the LED volume acting as a light source, while still
maintaining accurate in-camera background colors. Since we know
that RGB LEDs produce color rendition errors when simulating
broad-spectrum lighting, we solve for an optimal post-correction
matrix to improve color matching. Such a post-correction matrix
can desaturate overly pink/red skin tones while keeping neutral
colors neutral, which cannot be accomplished by altering the con-
tent displayed on the LED stage alone. We further show that if we
apply the inverse of the post-correction matrix to the in-camera-
frustum area, then the in-camera background color matching can be
maintained as well. While prior calibration approaches focus exclu-
sively on in-camera background color accuracy and do not consider
post-correction strategies, our multi-matrix approach ensures near
optimal color rendition simultaneously both for foreground content
(e.g. actors, set, costumes) as well as the in-camera background. Our
technique requires no spectral measurements of any part of the
system (camera, materials, or LED panels), relying only on four cal-
ibration images captured with the principal-photography camera
for a given LED volume.

2 METHOD
2.1 Overview of Our Approach
To summarize, we propose the following straightforward steps:

(1) We solve for a 3 × 3 pre-correction matrixM (to be applied
to the displayed content) that maps the target scene’s pixel
colors to the LED panel colors, so they look the same to
the motion picture camera. In general, applying M to the
displayed content will not, however, light the stage subjects
accurately, as colors will appear overly-saturated.

(2) We thus solve for 3×3 post-correctionmatrixQ (to be applied
to the final recorded image) that will make a photographed
color chart lit by the VP stage displaying the HDR IBL envi-
ronment look as close as possible to how it appeared in the
real scene. However, if we apply Q to the whole image, the
in-camera background pixels will no longer appear correct.

(3) Thus, instead of applyingM to the in-camera-frustum con-
tent, we apply a different 3 × 3 pre-correction matrix N =

MQ−1. As the background pixels do not contribute signifi-
cantly to the lighting on the actors, both the color rendition
on the actors and the appearance of the in-camera pixels will
be near optimal. To visualize our methodology, see Fig. 5.

2.2 Assumptions and Prerequisites
Panel and Camera Linearity. We first assume that an LED volume
has been calibrated to act as a linear display. Images of displayed
color swatch ramps, or an image series shot with increasing pixel
values on the LEDs [Debevec et al. 2002] can be used to verify
linearity, and if needed, to correct for it. Our method also assumes
that the camera used throughout the imaging workflow also has
a linear response, as is typical for digital cinema cameras. In this
work, we verified the LED panels showed images with a gamma

Figure 5: A visualization of our method. A 3 × 3 pre-
correction matrix M is applied for out-of-frustum content,
while a different 3 × 3 pre-correction matrix N = MQ−1 is
applied for in-camera-frustum content. Finally, a 3 × 3 post-
correction matrix Q is applied to the recorded image con-
tent.

value of 2.4, and gamma-corrected all linearly computed images for
display accordingly.

Radiometric Alignment of Different Panel Types. LED volumes in
practice are often comprised of multiple types of LED panels, de-
pending on whether they are designed to cover a studio’s ceiling,
wall, or floor. Our method also further assumes that the relative
brightness levels of different panel types comprising an LED volume
have been calibrated such that a pixel value of [1, 1, 1] displayed
from all directions produces as uniform as possible of a sphere of
light of even intensity and color balance from all directions.

HDRI Map Acquisition and Display. We assume that the lighting
environment to be displayed on the VP stage will be captured using
HDR panoramic photography techniques (e.g. [Debevec 1998]).
We further assume that a color chart has been photographed at a
spatial location such that the HDR panorama’s center of projection
matches the location of the color chart in the scene. In practice, this
means that our technique could be less accurate for color charts
shot at some distance from the HDRI map’s location. Finally, we
assume that the VP stage is capable of representing the full dynamic
range of the HDRI map, without clipping any light sources.

2.3 Calibration Images and Equations
Our technique requires just four calibration images, all photographed
using the target camera to be used for filming in the LED volume.
We next describe these photographs, providing intuition as to why
they are needed. The first is of the LED panels displaying color
patches for each primary color, required for computing M. The
second, third, and fourth images record how each spectral channel
of the LED stage lights a color chart, required for computing Q.

Solving forM: Primary-based Calibration. This measurement allows
us to map the target scene’s pixel colors to LED panel colors ob-
served by the camera, ensuring a metameric illuminant match when
a scene’s HDRI map is displayed. For this calibration, we display
a patch of pure red, pure green, and pure blue on the in-camera-
frustum LED panels and record their appearance to the camera (see
Fig. 6). These patches can all be photographed in a single image.

This is the same process that is used to generate a primary-
calibrated LED panel [Unreal 2022; Weidlich et al. 2021]. From
these images, we extract average pixel values and concatenate them
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Figure 6: The red, green, and blue LEDs as observed by our
camera. Pixel values sampled from these images form ma-
trix [SL], encoding how the camera observes the LED pri-
maries.

along columns to obtain a 3 × 3 matrix that we call [SL], because
its elements are the pairwise dot products of the camera’s Spectral
sensitivity functions and the LED emission spectra. [SL] has the
camera’s color channels along rows, and the spectral channels of
the LED volume along columns. We ensure that out-of-frustum
panels are turned off during this capture, to prevent including light
bounced off the front side of the panels in the measurement. From
[SL], we can solve for our 3 × 3 matrixM:

[SL]MI = I (1)
Here, I is the identity matrix. This equation holds because our

goal is that pixel values corresponding to pure red, green, and blue
([1, 0, 0], [0, 1, 0] and [0, 0, 1]) displayed by the panel are observed
as the same pixel values to the camera. We can also think of this
equation as linearly combining the LED primaries as seen by the
camera (columns of [SL]) to produce the final pixel values of our
image. We can easily solve forM using matrix inversion:

M = [SL]−1 (2)
Thus far, this process is nearly identical to that used for cal-

ibrating a typical VP stage for in-camera VFX. However, in our
technique we will use M as a color correction matrix for out-of-
frustum content only, rather than for all content as before.

Solving for post-correctingQ: Color Rendition Calibration. Next, our
goal is to solve for a 3 × 3 post-correction matrix Q which, when
applied to the final image, makes a color chart lit by the VP stage
displaying the HDR IBL environment look as close as possible to
how it appeared in the real-world scene. It is common practice to
capture a slate including a color chart during filming, so we assume
that such imagery will be available. While we could, in practice,
just photograph the chart as illuminated by the HDR IBL displayed
by the panels (pre-corrected with M), and solve for Q from this
image directly, ideally we would be able to compute Q only from
calibration imagery, captured once regardless of the number of
lighting environments that we wish to display.

Towards this end, we photograph the color chart as illuminated
by each spectral channel of the LED volume individually, following
the procedure outlined by LeGendre et al. [2016]. The core insight
here is that because of the superposition principle for light, any
chart illuminated by the VP stage will resemble a linear combi-
nation of these three images. So, if we capture such data, we can
simulate the appearance of a color chart illuminated by any given
environment, rather than needing to photograph it each time to
compute Q.

To capture these photographs, we turn on a 1m × 1m square
of the LED wall for each spectral channel, and we place our color
chart 1m from the center of the square aimed directly towards the
LED wall. We orient our camera such that its optical axis makes
a 45◦ angle with the surface normal direction of the color chart,
leveraging the color chart’s mostly Lambertian reflectance. We
show this setup in Fig. 7 (top row), and the resulting calibration
images in Fig. 7 (middle row), and, finally, the pixel values sampled
from these images in Fig. 7 (bottom row).
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Figure 7: Top row: our color rendition calibration setup, pho-
tographed with a witness camera. Middle row: calibration
photographs of the color chart lit by each spectral channel.
Bottom row: sampled from the images of the middle row.

Although we know that sampled values from a color chart il-
luminated by the VP stage displaying any HDR IBL environment
must be a linear combination of the sampled values from the cali-
bration data in Fig. 7, we must determine how much of each spectral
channel to add together to simulate a color chart’s appearance in a
given environment. For this, we first need to know the relationship
between amount of light represented by the 1m × 1m square of
light as compared with the full sphere of illumination (assuming an
ideal virtual production stage with no missing lighting directions).
We further need to know how much of each spectral channel will
be used when displaying each unique lighting environment.

We first define a scale factor 𝛽 that accounts for the fact that
the 1m × 1m square of illumination, from a 1m distance, represents
a smaller solid angle compared to the full sphere of illumination.
We construct a cube map environment with a square representing
the panel, using a ∼54 pixel width square for a cube map with a
face width of 90 pixels (∼54◦). We compute the diffuse convolution
for the frontal direction (see Fig. 8), which yields 𝛽 ≈ 0.311. Thus,
we scale our calibration images by 1

𝛽
. This scale factor depends

only on the setup geometry, and not the individual type of LED
panel or camera used. In general, as real-world VP stages will be
missing some lighting directions and may not contain emissive
flooring, this technique is designed to require only a 1m × 1m
square of LED panels plus a scale factor, rather than omnidirectional,
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even illumination. Nonetheless, we are still able to predict how a
color chart would appear when lit with uniform, omnidirectional
illumination for each spectral channel.

(a) latitude longitude mapping (b) diffuse convolution

Figure 8: (a) A latitude-longitudemapping of the calibration
setup: a 1m × 1m panel viewed from a 1m distance; (b) The
diffuse convolution of (a). From (b) we solve for the scale
factor 𝛽 that adjusts for the intensity difference between our
calibration setup and a full, even sphere of illumination.

Next, to determine how much of each spectral channel will be
used when displaying a particular lighting environment, we lever-
age the fact that a color chart reflects light mostly diffusely ac-
cording to Lambert’s law, integrating its full frontal hemisphere of
lighting directions. Thus, for the purposes of color rendition, we
only care about the diffuse integral of the illumination in the VP
stage, rather than the individual contributions of each pixel of the
LED panels. We define the diffuse integral of the frontal hemisphere
of the HDRI map as the RGB pixel value wavg. If the target color
chart is photographed while placed at center of projection of the
HDRI panorama, then wavg is equal to the pixel value of the white
square of this color chart, scaled up to adjust for the fact that the
white square of a typical color chart is only ∼90% reflective. Thus,
instead of simply summing together images of the color chart as il-
luminated by a full sphere of illumination for each spectral channel,
we can now scale these images based on the expected overall diffuse
integral for a given lighting environment, expressed as wavg. This
is essentially tinting the full, even sphere of illumination based on
the white balance of the given environment, which can be measured
directly from the appearance of the white square of a color chart
placed in the original, real-world scene. However, we are employing
the pre-correction matrixM when displaying the out-of-frustum
content responsible for color rendition. Thus, rather than tinting
the full, even sphere of illumination using wavg, we must instead
tint it using Mwavg.

Formally, with the above calibration data, we can simulate the
appearance of color chart illuminated by an HDR IBL displayed in a
VP stage, which we will finally use to solve for Q. For a given color
chart square 𝑗 , we define a 3 × 3 matrix [SRL]j that encodes the
fully-spectral modulation and integration of the camera spectral
sensitivity functions, the LED emission spectra, and the material
reflectance spectrum. As with the previously defined [SL] matrix,
[SRL]j has the camera’s color channels along rows, and the spectral
channels of the LED volume along columns. In other words: each
column encodes the RGB pixel values of how a particular color
chart square 𝑗 appears when illuminated by each available spectral
channel. Note that there will be a different [SRL] matrix for each
chart square, as each square has a unique reflectance spectrum. The
pixel values for each [SRL] matrix are captured by our calibration
process, represented by the sampled values in Fig. 7 (bottom row).
Finally, the expression to simulate how a given chart square 𝑗 will

appear when illuminated by the VP stage displaying an HDR IBL
with diffuse integral wavg and out-of-frustum matrixM is:

1

𝛽
[SRL]jMwavg . (3)

Our ultimate goal is to match the color rendition properties of
the original scene, with target color chart values p. Thus, including
the desired post-correction matrix Q, we would like to minimize
the squared error between the predicted pixel values and the target
pixel values across all 𝑛 chart squares:

argmin(
𝑛∑︁
𝑗=1

| | 1
𝛽
Q[SRL]jMwavg − pj | |). (4)

Each chart square yields three equations (one each for the red,
green, and blue channels of the final image), while Q contains nine
unknown variables. We could therefore choose three chart squares
to match exactly, or we could use all 24 squares of the color chart
to solve for Q in a least squares sense. Recall, in Eqn. 4, [SRL]
values are obtained from calibration imagery, whilewavg and p are
sampled from the target color chart in the original environment.
M was computed using the primary-calibration procedure. Thus,
while M is lighting environment independent, Q depends on the
appearance of a color chart in a particular environment and thus
will change depending on the target HDRI map.

Solving for N: Inverting the effect of Q for the in-camera background.
Unfortunately, if we apply the 3×3 post-correction matrix Q to the
whole image, the in-camera background pixels will also be trans-
formed and may no longer appear correct. While foreground detec-
tion or rotoscoping could allow the correction to be applied only
to the foreground, this would require additional complexity. Our
key insight here is that if we know in advance the post-correction
matrixQ that we will ultimately apply to the final image or video se-
quence, we can apply the inverse of this correction to the in-frustum
part of the LED panels with Q−1. As the background pixels do not
contribute significantly to the lighting on the actors, both the color
rendition on the actors and the appearance of the in-camera pixels
can be optimized at the same time, with no foreground/background
separation required. Light reflecting at grazing angles from the
background to the camera generally has less opportunity to in-
teract with the pigments and chromophores of a material — with
Fresnel-enhanced specular reflections from dielectric materials such
as skin being an extreme case — and thus will tend to maintain
both the color and spectrum of the original illumination. As such,
we expect color rendition errors from the background lighting to
be relatively unnoticeable.

Given Q and SL, we rewrite Eqn. 1 to solve for a new in-camera-
frustum pre-correction matrix N:

Q[SL]NI = I. (5)

N = [SL]−1Q−1 . (6)

Furthermore, we can also substituteM for [SL]−1, clarifying the
relationship between the in- and out-of-camera-frustum matrices:

N = MQ−1 . (7)
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(1) warm white LED (2) incandescent (3) indoors daylight (4) RGB LED (5) sodium vapor (6) outdoors, shade (7) outdoors, direct sun

Figure 9: LDR images of the spectrally-diverse HDR lighting environments that we reproduced in our experiments.

In summary, we pre-correct the in-frustum content with N, ex-
pecting to post-correct the footage with Q. As Q is lighting en-
vironment dependent, so is N. In practice, since Q will typically
desaturate pixel colors, Q−1 will typically increase the saturation
of pixel colors. As such, we ensure that the LED panels are set to
display in their widest possible color gamut, with primaries that
turn on each LED spectrum independently.

2.4 Black Level Subtraction
A current limitation of LED panels used for in-camera backgrounds
is that the panels themselves reflect back some incident illumina-
tion, i.e., they have a non-zero albedo. Thus LED panels lighting
the actors also have the unwanted side-effect of illuminating the
in-camera background panels. In our experiments, we observed
panel albedos varying from ∼4-10%. To compensate for this, we
adjust the in-camera-frustum pixel values with an RGB offset using
a "black level" measurement. For each lighting environment, we
turn on all the out-of-frustum content, first applyingM. Next, we
turn off the in-camera background, and record with our camera a
per-lighting-environment average RGB color to subtract from the
rendered content prior to display. In practice, we sample a region
of interest from such an image, which yields the RGB pixel value
𝑏𝑐𝑎𝑚𝑒𝑟𝑎 . This pixel value cannot be used directly for the black level
subtraction for the content, as we need to factor in the scale factor
between the content and its camera-observed value. We can sum
together the calibration images of Fig. 6 to obtain a pixel value
𝑤𝑐𝑎𝑚𝑒𝑟𝑎 of the camera observing a pixel value of [1, 1, 1]. We then
compute the black level to subtract from the final rendered content
as 𝑏𝑐𝑎𝑚𝑒𝑟𝑎

𝑤𝑐𝑎𝑚𝑒𝑟𝑎
. The downside of this approach is that it requires per-

lighting-environment empirical measurement. Future work could
aim to analytically estimate the black level subtraction via light
transport, given 𝑤𝑐𝑎𝑚𝑒𝑟𝑎 , measured panel albedo, and the HDRI
map, or to measure the radiosity form factors within the stage
directly using a wide-angle camera and a discretized lighting basis.

3 RESULTS
In this section, we present experimental and theoretical results,
evaluating our technique when reproducing the color rendition
properties of several real-world lighting environments.

HDR Lighting Measurement and Real-World Photography. We cap-
tured seven spectrally-diverse lighting environments using a nodal
tripod mount, Canon 5DMark III, and a Canon 8-15mm fisheye lens
with a 180◦ field-of-view, using multiple exposure HDR photog-
raphy. Five of these lighting environments were captured indoors
in a living room, each with its own distinct type of illumination:
(1) broad-spectrum warm white LED lighting, (2) incandescent
(tungsten halogen) lighting, (3) daylight shining through windows,
(4) RGB LED "white" light, and (5) monochromatic yellow-orange
sodium vapor lighting, with a distinct emission spectrum spike at

589 nm. The remaining two lighting environments were captured
outdoors at a park, (6) in the shade and (7) in direct sunlight. We
show LDR renderings of the lighting environments in Fig. 9. We
were careful that no light sources clipped at each shortest exposure,
with the exception of the sun, whose missing energy we recon-
structed using the appearance of the white square of a color chart
placed in the scene leveraging prior techniques [Debevec 2003].
We calibrated an aperture-dependent radial lens fall-off, appropri-
ately scaling the merged HDR images before stitching together four
different views to assemble each lighting environment into an 8k
panorama with PTGui [2022].

In each environment, to capture the color rendition properties
of the real-world illumination, we additionally photographed two
subjects wearing brightly colored patterned clothing, along with a
color chart, a diffuse gray sphere, and a mirrored sphere as refer-
ence. For these images, we ensured that the panorama’s center of
projection was located near the placement of the color chart in the
scene. For these reference photographs, we used the same camera
outfitted with a 40mm lens and an HDR exposure series matching
that of the panorama capture.

Lighting Reproduction in an RGB VP Stage. To test our technique,
we reproduced each lighting environment inside a cylinder-shaped
RGB LED based virtual production stage including floor, ceiling,
and wall LED panels. Although the stage did not produce a full
360◦ of illumination, we ensured a setup that maximized coverage
of frontal lighting directions while still allowing us to record an
in-camera background. Inside the VP stage, we captured all images
using a ZCam E2 compact cinema camera outfitted with a Laowa
17mm MFT lens. Our spherical content was displayed on the LED
panels using the Unreal Engine, with camera tracking to adjust
the camera frustum in real-time. Within Unreal, we added a color
matrix operation to the in-frustum and out-of-frustum shaders
separately to implement our approach.

To evaluate the effect of Q and N on the in-camera background
displayed colors, we composited the color charts photographed in
the real environments into the HDRI maps, careful to match the
exposures, such that they would appear behind our actors when
displaying the HDRI maps. As our main focus was color rendition,
we did not try to match the perspective of the virtual camera with
our real world camera, so the in-camera backgrounds in our experi-
mental results are not precisely aligned with those of the real-world
imagery. The backgrounds displayed in the VP stage are from the
HDRI map, shot from the perspective of the subjects rather than
from that of the camera used for our reference portraits.

In general, real-world light sources will be orders of magnitude
brighter than the rest of a scene. However, in practice, VP stages
have a limited dynamic range. To achieve a sufficiently bright in-
camera background appearance for the composited color charts,
we required a white square pixel value greater than 0.1. With this

6



constraint, the maximum pixel values of the HDRI maps ranged
from 40 to 3000 (allowing sun energy to spread to more than one
pixel), well beyond the maximum panel-displayable value of 1. To
prevent light source clipping in the VP stage, prior to displaying
the content we used an energy-preserving light source dilation
algorithm [Debevec and LeGendre 2022] for each HDRI map.

Experimental Results. In this section, we use one consistent color
matrix to take all images from a camera raw color space to sRGB
for display as a post-process for the purpose of visualization. This
matrix was computed from a color chart photographed in daylight
using the Canon 5D Mark III. When we report quantitative error,
however, these metrics are computed in the camera raw color space.

We also present color charts with inset circles, where the back-
ground squares represent pixel values sampled from a color chart
photographed in a real-world scene, while foreground circles rep-
resent values sampled from a chart in the VP stage. We sample
chart values both from a color chart illuminated by out-of-frustum
content and one displayed on the LED panels in-frustum and ob-
served directly by the camera. For these visualizations, we scale
the sampled pixel values such that the green channel of the white
squares match to facilitate visual comparisons. In practice, our VP
stage is missing some lighting directions, so the out-of-frustum lit
chart is typically dimmer than the in-frustum displayed chart.

In Fig. 10, we demonstrate our full process including intermedi-
ate results for the outdoors, shaded environment. As compared with
the real photograph captured outdoors [column (a)], reproducing
the illumination in the VP stage using the baseline primary-based
calibration approach leads to the expected overly saturated skin
tones and reddish hue shift for yellow and orangematerials [column
(b)]. Applying the post-correctionmatrixQ [column (c)] desaturates
these colors, improving color rendition, as observed for the compar-
ison charts, skin tones, and clothing. However,Q also adds a blueish
tint to the in-camera displayed chart, visible in the comparison chart
of column (c). Applying N = MQ−1 to the in-frustum content re-
moves this blueish tint [column (d)], but color rendition is still poor
for the in-camera background due to the non-zero panel albedo
and bounced light. The black level subtraction for the in-frustum
content [column (e)] thus provides the most dramatic improvement
for the in-camera background. While small mismatches remain, we
achieved our target goal of desaturating skin tones and improving
orange/yellow material color rendition, without sacrificing the in-
camera background colors. Unfortunately, the VP stage lacked light
sources for the directions corresponding to those providing the rim
lighting on the subject’s left side of the face, somewhat limiting the
overall quality of the reproduced illumination.

For the remaining six environments, we show the real-world
photographs, then the baseline VP lighting reproduction usingM
only for both in- and out-of-frustum content, and then our full
multi-matrix pipeline with black level subtraction in Fig. 11 and
Fig. 12. When using the baseline calibration approach where the
goal is just to match the in-camera background colors, the lit color
chart in the VP stage is overly saturated, with hue shifts in yellow
and orange materials. One exception is the RGB LED based white
lighting environment, which the VP stage is able to reproduce quite
well owing to the spectral similarity between its light sources and

those of this particular real-world scene. For this scene, the post-
correctionQmatrix is close to the identity and does not have a very
significant effect. However, there are color rendition challenges for
the remaining scenes that include broader spectrum illumination
sources. For the remaining scenes, theQmatrix is able to desaturate
colors as required, leading to improved color rendition for the lit
chart.WhileQ desaturates the overall image content, the in-frustum
matrix N ensures that the in-camera background content is still
as close as possible to the target color appearance. However, as
in Fig. 10, the black level subtraction for panel albedo is the more
significant effect for in-camera background color rendition.

In the most extreme case, in Fig. 12 (upper row), we show that
the RGB LEDs are not at all able to reproduce the narrow-band
illumination of the sodium vapor light source. While under the real
sodium vapor lighting, materials appear nearly monochromatic
(tinted yellow), under the RGB-reproduced illumination they still
have discernible colors. The post-correction matrix Q completely
desaturates these colors, satisfyingly reproducing the monochro-
matic look of the original scene. However, there is a noticeable
difference between the subjects’ clothing in the real-world scene
compared with in the VP stage, even after applying Q: the yel-
low regions of the clothing remain too dark. In this case, a 3 × 3
post-correction matrix can only help so much. Furthermore, for
the sodium vapor environment, we were unable to solve for N. Q
was ill-conditioned due to the monochromatic nature of the illumi-
nation and thus Q−1 is poorly defined. As such, for Fig. 12 (upper
row), our full technique includes only M, Q, and the black level
subtraction.

Unexpectedly, we observed some remaining differences in the
white balance of the lit color charts and the displayed color charts,
despite our best attempts to calibrate the full system. As an example,
see the results of Fig. 11 (bottom row). While we did our best to
ensure panel linearity, we observed the red LED channel of our VP
stage exhibited its own single-channel non-linearity. We suspect
that a single-channel linearity calibration process involving a 3D
lookup table (LUT) could mitigate this issue.

Quantitative Results. In Fig. 13 we show quantitative errors corre-
sponding to the comparison color charts of Figs. 11 and 12. Solid bars
represent the per-color-channel error associated with the baseline
approach, while dashed bars represent error for our full approach.
For both the out-of-frustum lit [Fig. 13(a)] and in-camera-frustum
displayed [Fig. 13(b)] color charts, the average error relative to the
white square intensity is under 4% for all seven scenes. The RGB
LED lighting environment has the smallest average error, while the
sodium vapor has the largest error for the lit color chart, consistent
with visual observations from Figs. 11 and 12.

Theoretical Results. Although we have demonstrated the practical
performance of our technique, for each lighting environment, we
also show theoretical results for the lit color charts in Fig. 14. Rather
than record the color chart’s appearance, as in the previous section,
here we also simulate the appearance of the color chart using Eqn. 3
and our calibration data, first usingM only and then usingM andQ.
Our experimental results usingQ [Fig. 14(d)] are very similar to the
theoretical results using Q [Fig. 14 (c)]. The remaining color error
in [Fig. 14(d)], when our results are compared with the target color
chart background squares, is therefore largely not the product of
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(a) real environment (b) VP: M only baseline (c) VP: M and Q (d) VP: M, N, and Q (e) VP: M,N, Q, and black level
(outdoors in shade) (previous approaches) (noQ−1 correction) (all matrices) (our full approach)

Figure 10: Column (a): two subjects photographed outdoors [Fig. 9(6)] and select crops. Column (b): VP lighting reproduction
using the baseline approach (M only). Column (c): applying post-correctionQ to the images of column (b). Column (d): also pre-
correcting in-frustum content with N. Column (e): including our black level subtraction. For comparison charts, background
squares are sampled from the chart in the real environment, while foreground circles are sampled from corresponding charts
in each column. In the VP stage we photographed both a chart lit by out-of-frustum content and displayed on the panels.
Compared with the baseline (b), Q enables improved color rendition for the lit chart, desaturating skin tones and improving
the appearance of orange/yellow materials. Black level subtraction provides a dramatic improvement to displayed content.8



HDR IBL (warm white LED) lit comparison displayed comparison lit comparison displayed comparison

HDR IBL (RGB LED based white) lit comparison displayed comparison lit comparison displayed comparison

HDR IBL (outdoors, direct sunlight) lit comparison displayed comparison lit comparison displayed comparison

(a) photograph in real environment (b) VP using primary-based calibration, M only (baseline) (c) VP using M, N, Q, and black level (our approach)

Figure 11: For three spectrally-diverse lighting environments, we show subjects photographed in the real world (a), lighting
reproduction in a VP stage using the baseline approach (b), and using our full approach (c). Compared with the baseline
calibration method, our approach enables improved color rendition for the lit chart, desaturating skin tones and improving
the appearance of orange/yellow materials. Our black level subtraction removes the appearance of light bounced off the in-
camera background LED panels. Observe the color rendition for the RGB LED based lighting environment (middle rows) is
already quite good as we are asking RGB LED panels to reproduce RGB LED based illumination.
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HDR IBL (sodium vapor) lit comparison displayed comparison lit comparison displayed comparison

HDR IBL (natural daylight) lit comparison displayed comparison lit comparison displayed comparison

HDR IBL (incandescent/tungsten) lit comparison displayed comparison lit comparison displayed comparison

(a) photograph in real environment (b) VP using primary-based calibration, M only (baseline) (c) VP using M, N, Q, and black level (our approach)

Figure 12: For three spectrally-diverse lighting environments, we show subjects photographed in the real world (a), lighting
reproduction in a VP stage using the baseline approach (b), and using our full approach (c). Compared with the baseline
calibrationmethod, our approach enables improved color rendition for the lit chart, desaturating skin tones and improving the
appearance of orange/yellowmaterials. Our black level subtraction removes the appearance of light bounced off the in-camera
background LEDpanels. For the sodiumvapor lighting environment of the top row, Q is able to completely desaturate the RGB-
LED color chart in the VP stage to better match the appearance of the nearly monochromatic sodium vapor illumination in
the real world.
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(a) out-of-frustum lit color chart error

(b) in-camera-frustum displayed color chart error

Figure 13: Average error relative to the white chart patch in-
tensity value, for RGB channels individually and for each
lighting environment, (a) for the out-of-frustum lit color
chart, compared with the target color chart in the real world
illumination, and (b) for the in-frustum displayed chart, also
compared with the target. The solid bars represent error for
the baseline approach (M only) while the dashed bars rep-
resent error for our full approach leveraging Q and, for the
displayed chart, black level subtraction.

calibration or real-world system errors, but, rather, a fundamental
limitation of using only 3 × 3 linear transformations to improve
color rendition from RGB LED based illumination.

4 FUTUREWORK
Evaluation for Different Skin Tones. While our technique improves
color rendition for the squares of a color chart and several colorful
fabrics, and it desaturates the overly-pink appearance of lighter skin
tones in VP stages, future work should also evaluate its performance
when photographing a greater diversity of subjects with different
skin tones, as in Kadner [2021b] and LeGendre et al. [2016].

Joint Optimization of M and Q. We have referred to our multi-
matrix approach as near optimal rather than optimal, as we have first
fixed the out-of-frustum matrixM and then subsequently solved
for the post-correction matrix Q. Upon closer inspection, one could
imagine minimizing the same objective function as in Eqn. 4, but
jointly optimizing forM and Q simultaneously. Initially, we did try
this joint optimization approach, but we found in practice that the
resultant illumination in the VP stage appeared very non-neutral in
color, and the post-correction matrix Q often had to make dramatic
color adjustments. Beyond the obvious issue of such lighting being
non-ideal to actors immersed in the content of the VP stage, this
optimization approach often led to practical out-of-gamut issues

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(a)M only (theory) (b)M only (exp.) (c) M & Q (theory) (d) M & Q (exp.)

Figure 14: Comparison charts demonstrating the difference
between our technique in theory and in experimental prac-
tice. Background squares are sampled from the chart in
the real environment, while foreground circles are sampled
from corresponding charts for each column label. (a) shows
using M only for the lit chart, a theoretical result computed
using Eqn. 3. (b) shows using M only, with pixel values sam-
pled from images captured in the VP stage for the lit chart
during our experiments. (c) shows adding Q to the theoreti-
cal result of (a). (d) shows adding Q to the experimental re-
sult of (b). Our experimental and theoretical results match
closely. The lighting environments for each row are indi-
cated at the left, using the labels of Fig. 9.

in the VP stage. Future work could explore this joint optimization
approach, while constraining the white point of the content for
better on set appearance and in-gamut content.

In our current approach, we have also not addressed the ideal
color space of the content to be displayed. In our experiments, our
HDRI maps were encoded in the camera raw of the Canon 5D Mark
III camera, a relatively desaturated color space. This color space was
somewhat sensible, as the majority of the displayed content was
well within the achievable color gamut of the LED panels. However,
a joint optimization approach could allow us to further reason about
the ideal color space for the content to be displayed.

Moving Beyond Linear Color Transforms withMachine Learning. The
theoretical results of Fig. 14 demonstrate the limits of our proposed
technique when leveraging 3×3 color matrix transforms. The light-
ing reproduced using RGB LEDs is fundamentally lacking energy
in parts of the visible spectrum, so only so much color information
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can be recovered. Future work could leverage exemplar-based ma-
chine learning techniques to effectively hallucinate the appearance
of materials under these missing parts of the EM spectrum based
on multispectral image datasets or training data captured under
both RGB and broad-spectrum illumination, taking inspiration from
recent successes in exemplar-based gray-scale image colorization
(e.g. [Zhang et al. 2016]).

Mixing Practical Lights and Virtual Production. On typical virtual
production sets, cinematographers may also wish to add practical
light sources into the scene to enhance the look and feel of a partic-
ular shot. In our work, we have not yet addressed how to drive the
LED panels and external practical lights together for optimal color
rendition, which we view as an additional opportunity for future
work. We imagine that our current framework, however, may still
prove useful for this sub-problem.

Extending our Approach to CG Scenes. Finally, although we have
demonstrated the results of our technique using real-world pho-
tographed HDR IBL environments, it should apply as well when
using rendered or computer-generated (CG) HDR IBL environments.
However, one requirement of our technique is that we know the
color rendition of the target lighting environment, provided via a
color chart photographed in the original scene. One could either
render such a color chart for a CG scene using a spectral rendering
technique, or, alternatively if such a renderer is unavailable one
could simply capture a photograph of a color chart in a similar
real-world scene. For example, for a CG daylight environment, one
could photograph a color chart in the real world in daylight as a
record of the target color rendition. Future work could evaluate this
proposed technique for bridging the gap between rendered RGB
HDR IBL environments and real-world measured color rendition.

5 CONCLUSION
We have presented a novel technique to improve the color rendi-
tion for RGB-LED based lighting reproduction, as applied towards
today’s LED panel virtual production stages. In our approach, we
treat the primary goal as improving color rendition for materials
illuminated by out-of-camera-frustum content in the LED volume,
while treating in-camera color rendition as a secondary goal. Our
technique requires only four calibration images: a record of how
each LED appears to the motion picture camera and how each
spectral channel of the RGB LED volume lights a color chart. We
derive from these four images and a target color chart appearance
three separate color transforms represented as 3 × 3 matrices: one
that corrects in-frustum content, one that corrects out-of-frustum
content, and one that is applied as a post-process to the acquired
footage. We demonstrated that our method out-performs the pre-
vious state-of-the-art technique for color calibration, which only
calibrates for the in-camera background color appearance. Our tech-
nique is straightforward, requiring only a few additional calibration
images and basic shaders applied in a virtual production system.
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